Publication:
Collective voice of experts in multilateral negotiation

dc.contributor.authorGüneş, Taha Doğan
dc.contributor.authorArditi, Emir
dc.contributor.authorAydoğan, Reyhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.contributor.ozugradstudentGüneş, Taha Doğan
dc.contributor.ozugradstudentArditi, Emir
dc.date.accessioned2018-05-28T06:41:58Z
dc.date.available2018-05-28T06:41:58Z
dc.date.issued2017
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractInspired from the ideas such as “algorithm portfolio”, “mixture of experts”, and “genetic algorithm”, this paper presents two novel negotiation strategies, which combine multiple negotiation experts to decide what to bid and what to accept during the negotiation. In the first approach namely incremental portfolio, a bid is constructed by asking each negotiation agent’s opinion in the portfolio and picking one of the suggestions stochastically considering the expertise levels of the agents. In the second approach namely crossover strategy, each expert agent makes a bid suggestion and a majority voting is used on each issue value to decide the bid content. The proposed approaches have been evaluated empirically and our experimental results showed that the crossover strategy outperformed the top five finalists of the ANAC 2016 Negotiation Competition in terms of the obtained average individual utility.en_US
dc.identifier.doi10.1007/978-3-319-69131-2_27en_US
dc.identifier.endpage458en_US
dc.identifier.isbn978-3-319-69130-5
dc.identifier.issn0302-9743en_US
dc.identifier.scopus2-s2.0-85034265442
dc.identifier.startpage450en_US
dc.identifier.urihttp://hdl.handle.net/10679/5819
dc.identifier.urihttps://doi.org/10.1007/978-3-319-69131-2_27
dc.identifier.volume10621en_US
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringer International Publishingen_US
dc.relation.ispartofInternational Conference on Principles and Practice of Multi-Agent Systems PRIMA 2017
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsAgreement technologiesen_US
dc.subject.keywordsAutomated negotiationen_US
dc.subject.keywordsMultilateral negotiationen_US
dc.subject.keywordsNegotiation Competitionen_US
dc.subject.keywordsMulti-agent systemsen_US
dc.titleCollective voice of experts in multilateral negotiationen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections