Publication:
Genetic algorithms and heuristics hybridized for software architecture recovery

dc.contributor.authorElyasi, Milad
dc.contributor.authorSimitcioğlu, Muhammed Esad
dc.contributor.authorSaydemir, Abdullah
dc.contributor.authorEkici, Ali
dc.contributor.authorÖzener, Okan Örsan
dc.contributor.authorSözer, Hasan
dc.contributor.departmentIndustrial Engineering
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorEKİCİ, Ali
dc.contributor.ozuauthorÖZENER, Okan Örsan
dc.contributor.ozuauthorSÖZER, Hasan
dc.contributor.ozugradstudentSimitcioğlu, Muhammed Esad
dc.contributor.ozugradstudentSaydemir, Abdullah
dc.contributor.ozugradstudentElyasi, Milad
dc.date.accessioned2023-08-11T12:37:28Z
dc.date.available2023-08-11T12:37:28Z
dc.date.issued2023-06-26
dc.description.abstractLarge scale software systems must be decomposed into modular units to reduce maintenance efforts. Software Architecture Recovery (SAR) approaches have been introduced to analyze dependencies among software modules and automatically cluster them to achieve high modularity. These approaches employ various types of algorithms for clustering software modules. In this paper, we discuss design decisions and variations in existing genetic algorithms devised for SAR. We present a novel hybrid genetic algorithm that introduces three major differences with respect to these algorithms. First, it employs a greedy heuristic algorithm to automatically determine the number of clusters and enrich the initial population that is generated randomly. Second, it uses a different solution representation that facilitates an arithmetic crossover operator. Third, it is hybridized with a heuristic that improves solutions in each iteration. We present an empirical evaluation with seven real systems as experimental objects. We compare the effectiveness of our algorithm with respect to a baseline and state-of-the-art hybrid genetic algorithms. Our algorithm outperforms others in maximizing the modularity of the obtained clusters.en_US
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1007/s10515-023-00384-yen_US
dc.identifier.issn0928-8910en_US
dc.identifier.issue2en_US
dc.identifier.scopus2-s2.0-85163341762
dc.identifier.urihttp://hdl.handle.net/10679/8642
dc.identifier.urihttps://doi.org/10.1007/s10515-023-00384-y
dc.identifier.volume30en_US
dc.identifier.wos001016798700001
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/120E488
dc.relation.ispartofAutomated Software Engineering
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsGenetic algorithmsen_US
dc.subject.keywordsReverse engineeringen_US
dc.subject.keywordsSoftware architecture recoveryen_US
dc.subject.keywordsSoftware modularityen_US
dc.subject.keywordsSoftware module clusteringen_US
dc.titleGenetic algorithms and heuristics hybridized for software architecture recoveryen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: