Publication:
Metrics for evaluating explainable recommender systems

dc.contributor.authorHulstijn, J.
dc.contributor.authorTchappi, I.
dc.contributor.authorNajjar, A.
dc.contributor.authorAydoğan, Reyhan
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorAYDOĞAN, Reyhan
dc.date.accessioned2024-01-16T11:00:57Z
dc.date.available2024-01-16T11:00:57Z
dc.date.issued2023
dc.description.abstractRecommender systems aim to support their users by reducing information overload so that they can make better decisions. Recommender systems must be transparent, so users can form mental models about the system’s goals, internal state, and capabilities, that are in line with their actual design. Explanations and transparent behaviour of the system should inspire trust and, ultimately, lead to more persuasive recommendations. Here, explanations convey reasons why a recommendation is given or how the system forms its recommendations. This paper focuses on the question how such claims about effectiveness of explanations can be evaluated. Accordingly, we investigate various models that are used to assess the effects of explanations and recommendations. We discuss objective and subjective measurement and argue that both are needed. We define a set of metrics for measuring the effectiveness of explanations and recommendations. The feasibility of using these metrics is discussed in the context of a specific explainable recommender system in the food and health domain.en_US
dc.description.sponsorshipSchweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung ; Fonds National de la Recherche Luxembourg ; Ministero dell’Istruzione, dell’Università e della Ricerca ; TÜBİTAK
dc.identifier.doi10.1007/978-3-031-40878-6_12en_US
dc.identifier.endpage230en_US
dc.identifier.isbn978-303140877-9
dc.identifier.issn0302-9743en_US
dc.identifier.scopus2-s2.0-85172263345
dc.identifier.startpage212en_US
dc.identifier.urihttp://hdl.handle.net/10679/9048
dc.identifier.urihttps://doi.org/10.1007/978-3-031-40878-6_12
dc.identifier.volume14127 LNAIen_US
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherSpringeren_US
dc.relationinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/120N680
dc.relation.ispartofExplainable and Transparent AI and Multi-Agent Systems
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsEvaluationen_US
dc.subject.keywordsExplainable AIen_US
dc.subject.keywordsMetricsen_US
dc.subject.keywordsRecommender systemsen_US
dc.titleMetrics for evaluating explainable recommender systemsen_US
dc.typeconferenceObjecten_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections