Publication:
COSMOS on steroids: a Cheap detector for cheapfakes

dc.contributor.authorAkgül, T.
dc.contributor.authorCivelek, Tuğçe Erkılıç
dc.contributor.authorUğur, Deniz
dc.contributor.authorBeğen, Ali Cengiz
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorBEĞEN, Ali Cengiz
dc.contributor.ozugradstudentCivelek, Tuğçe Erkılıç
dc.contributor.ozugradstudentUğur, Deniz
dc.date.accessioned2022-10-26T11:41:57Z
dc.date.available2022-10-26T11:41:57Z
dc.date.issued2021
dc.description.abstractThe growing prevalence of visual disinformation has become an important problem to solve nowadays. Cheapfake is a new term used for the altered media generated by non-AI techniques. In their recent COSMOS work, the authors developed a self-supervised training strategy that detected whether different captions for a given image were out-of-context, meaning that even though pointing to the same object(s) in the image, the captions implied different meanings. In this paper, we propose four methods to improve the detection accuracy of COSMOS. These methods range from differential sensing and fake-or-fact checking that detect contradicting or fake captions to object-caption matching and threshold adjustment that modify the baseline algorithm for improved accuracy.en_US
dc.identifier.endpage331en_US
dc.identifier.isbn978-1-4503-8434-6
dc.identifier.startpage327en_US
dc.identifier.urihttp://hdl.handle.net/10679/7937
dc.identifier.wos000723649200032
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherThe ACM Digital Libraryen_US
dc.relation.ispartofMMSYS'21: Proceedings of the 2021 Multimedia Systems Conference
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsCheapfakesen_US
dc.subject.keywordsRNNen_US
dc.subject.keywordsBERTen_US
dc.subject.keywordsSBERTen_US
dc.subject.keywordsIoUen_US
dc.subject.keywordsDifferential sensingen_US
dc.subject.keywordsFakeen_US
dc.titleCOSMOS on steroids: a Cheap detector for cheapfakesen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections