Publication: Direct liquid cooling of high flux LED systems: hot spot abatement
Institution Authors
Authors
Journal Title
Journal ISSN
Volume Title
Type
conferenceObject
Access
restrictedAccess
Publication Status
published
Abstract
With the recent advances in wide band gap device technology, solid-state lighting (SSL) has become favorable for many lighting applications due to energy savings, long life, green nature for environment, and exceptional color performance. Light emitting diodes (LED) as SSL devices have recently offered unique advantages for a wide range of commercial and residential applications. However, LED operation is strictly limited by temperature as its preferred chip junction temperature is below 100 °C. This is very similar to advanced electronics components with continuously increasing heat fluxes due to the expanding microprocessor power dissipation coupled with reduction in feature sizes. While in some of the applications standard cooling techniques cannot achieve an effective cooling performance due to physical limitations or poor heat transfer capabilities, development of novel cooling techniques is necessary. The emergence of LED hot spots has also turned attention to the cooling with dielectric liquids intimately in contact with the heat and photon dissipating surfaces, where elevated LED temperatures will adversely affect light extraction and reliability.
In the interest of highly effective heat removal from LEDs with direct liquid cooling, the current paper starts with explaining the increasing thermal problems in electronics and also in lighting technologies followed by a brief overview of the state of the art for liquid cooling technologies. Then, attention will be turned into thermal consideration of approximately a 60W replacement LED light engine. A conjugate CFD model is deployed to determine local hot spots and to optimize the thermal resistance by varying multiple design parameters, boundary conditions, and the type of fluid. Detailed system level simulations also point out possible abatement techniques for local hot spots while keeping light extraction at maximum.
Date
2013
Publisher
ASME
Description
Due to copyright restrictions, the access to the full text of this article is only available via subscription.