Publication: Autotuning runtime specialization for sparse matrix-vector multiplication
dc.contributor.author | Yılmaz, Buse | |
dc.contributor.author | Aktemur, Tankut Barış | |
dc.contributor.author | Garzaran, M. J. | |
dc.contributor.author | Kamin, S. | |
dc.contributor.author | Kıraç, Mustafa Furkan | |
dc.contributor.department | Computer Science | |
dc.contributor.ozuauthor | AKTEMUR, Tankut Bariş | |
dc.contributor.ozuauthor | KIRAÇ, Mustafa Furkan | |
dc.contributor.ozugradstudent | Yılmaz, Buse | |
dc.date.accessioned | 2016-07-29T05:25:59Z | |
dc.date.available | 2016-07-29T05:25:59Z | |
dc.date.issued | 2016-04 | |
dc.description | Due to copyright restrictions, the access to the full text of this article is only available via subscription. | |
dc.description.abstract | Runtime specialization is used for optimizing programs based on partial information available only at runtime. In this paper we apply autotuning on runtime specialization of Sparse Matrix-Vector Multiplication to predict a best specialization method among several. In 91% to 96% of the predictions, either the best or the second-best method is chosen. Predictions achieve average speedups that are very close to the speedups achievable when only the best methods are used. By using an efficient code generator and a carefully designed set of matrix features, we show the runtime costs can be amortized to bring performance benefits for many real-world cases. | |
dc.description.sponsorship | TÜBİTAK ; NSF | |
dc.identifier.doi | 10.1145/2851500 | |
dc.identifier.endpage | 26 | |
dc.identifier.issn | 1544-3973 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-84971629591 | |
dc.identifier.startpage | 1 | |
dc.identifier.uri | http://hdl.handle.net/10679/4351 | |
dc.identifier.uri | https://doi.org/10.1145/2851500 | |
dc.identifier.volume | 13 | |
dc.identifier.wos | 000373904600005 | |
dc.language.iso | eng | en_US |
dc.peerreviewed | yes | |
dc.publicationstatus | published | en_US |
dc.publisher | ACM | |
dc.relation | info:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/110E028 | |
dc.relation.ispartof | ACM Transactions on Architecture and Code Optimization (TACO) | |
dc.relation.publicationcategory | International Refereed Journal | |
dc.rights | restrictedAccess | |
dc.subject.keywords | Performance | |
dc.subject.keywords | Experimentation | |
dc.subject.keywords | Measurement | |
dc.subject.keywords | Autotuning | |
dc.subject.keywords | Runtime code generation | |
dc.subject.keywords | Sparse matrix-vector multiplication | |
dc.title | Autotuning runtime specialization for sparse matrix-vector multiplication | en_US |
dc.type | article | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 85662e71-2a61-492a-b407-df4d38ab90d7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 85662e71-2a61-492a-b407-df4d38ab90d7 |