Publication:
Sampling-free variational inference of Bayesian neural networks by variance backpropagation

dc.contributor.authorHaußmann, M.
dc.contributor.authorHamprecht, F. A.
dc.contributor.authorKandemir, Melih
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorKANDEMİR, Malih
dc.date.accessioned2020-10-22T10:38:18Z
dc.date.available2020-10-22T10:38:18Z
dc.date.issued2019
dc.description.abstractWe propose a new Bayesian Neural Net formulation that affords variational inference for which the evidence lower bound is analytically tractable subject to a tight approximation. We achieve this tractability by (i) decomposing ReLU nonlinearities into the product of an identity and a Heaviside step function, (ii) introducing a separate path that decomposes the neural net expectation from its variance. We demonstrate formally that introducing separate latent binary variables to the activations allows representing the neural network likelihood as a chain of linear operations. Performing variational inference on this construction enables a sampling-free computation of the evidence lower bound which is a more effective approximation than the widely applied Monte Carlo sampling and CLT related techniques. We evaluate the model on a range of regression and classification tasks against BNN inference alternatives, showing competitive or improved performance over the current state-of-the-art.en_US
dc.identifier.scopus2-s2.0-85084012503
dc.identifier.urihttp://hdl.handle.net/10679/7039
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherAssociation For Uncertainty in Artificial Intelligence (AUAI)en_US
dc.relation.ispartof35th Conference on Uncertainty in Artificial Intelligence, UAI 2019
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.titleSampling-free variational inference of Bayesian neural networks by variance backpropagationen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections