Publication:
Flexible architecture of relay-based wireless network for network lifetime extension with hop-count constraint

dc.contributor.authorChena, C.-T.
dc.contributor.authorTekinay, Şirin
dc.contributor.authorSaraydar, C.
dc.contributor.authorChene, H.-C.
dc.contributor.authorHsiehf, M.-Y.
dc.contributor.authorWangg, J.-W.
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.ozuauthorTEKİNAY, Şirin
dc.date.accessioned2016-06-30T12:33:38Z
dc.date.available2016-06-30T12:33:38Z
dc.date.issued2011
dc.descriptionDue to copyright restrictions, the access to the full text of this article is only available via subscription.
dc.description.abstractIn relay-based wireless networks, messages need to be forwarded via intermediate relay mobile terminals (MTs). However, because of various transmission distances and unbalanced traffic load, some relay MTs may tend to drain their batteries faster than others. After a certain number of MTs deplete their battery energy, the peer-to-peer communication may become disconnected. Depletion of the battery energy of any relay MT will degrade the performance of the relay-based wireless networks. The network lifetime is defined as the time at which an MT runs out of its battery energy for the first time within the entire network. Moreover, with commercial development of cellular systems proceeding, the research community turns its attention to the next generation systems. It is clear that next generation wireless networks will be heterogeneous wireless networks with a hierarchical overlay of networks of potentially different technologies. However, maintaining quality of service (QoS) in the heterogeneous environments of the future turns out to be a challenging task. In this article, a novel QoS constrained network lifetime extension cellular ad hoc augmented network (QCLE CAHAN) architecture is proposed for next generation wireless networks. The QCLE CAHAN architecture is proposed to achieve the maximum network lifetime under the end-to-end hop-count constraint (QoS constraint). QCLE CAHAN has a hybrid architecture, in which each MT of CDMA cellular networks has ad hoc communication capability. QCLE CAHAN is an evolutionary approach to traditional cellular networks. QCLE CAHAN can dynamically balance battery energy across MTs and extend the network lifetime. QCLE CAHAN can regulate the number of hops between the base station and the MT to adapt to the end-to-end QoS requirements for different services. We show that the network lifetime is much higher in the case of QCLE CAHAN than in the case of traditional cellular networks.
dc.description.sponsorshipNSF
dc.identifier.doi10.1080/17445761003691882
dc.identifier.issn1744-5779
dc.identifier.issue2
dc.identifier.scopus2-s2.0-79952656492
dc.identifier.urihttp://hdl.handle.net/10679/4258
dc.identifier.urihttps://doi.org/10.1080/17445761003691882
dc.identifier.volume26
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherInforma Group
dc.relation.ispartofInternational Journal of Parallel, Emergent and Distributed Systems
dc.rightsrestrictedAccess
dc.subject.keywordsCellular networks
dc.subject.keywordsAd hoc networks
dc.subject.keywordsNetwork lifetime
dc.subject.keywordsEnergy balance
dc.subject.keywordsHop count
dc.titleFlexible architecture of relay-based wireless network for network lifetime extension with hop-count constrainten_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication.latestForDiscovery7b58c5c4-dccc-40a3-aaf2-9b209113b763

Files