Publication:
Classifying LPI radar waveforms with time-frequency transformations using multi-stage CNN system

dc.contributor.authorGüven, İslam
dc.contributor.authorYağmur, İsmail Can
dc.contributor.authorKaradaş, Hasan Bahadır
dc.contributor.authorParlak, Mehmet
dc.contributor.departmentElectrical & Electronics Engineering
dc.contributor.ozuauthorPARLAK, Mehmet
dc.contributor.ozugradstudentGüven, İslam
dc.contributor.ozugradstudentYağmur, İsmail Can
dc.contributor.ozugradstudentKaradaş, Hasan Bahadır
dc.date.accessioned2023-08-10T06:24:35Z
dc.date.available2023-08-10T06:24:35Z
dc.date.issued2022
dc.description.abstractAs the number of radar waveforms in the cognitive electronic warfare applications increases, individual detection and classification performances of each waveform vary furthermore due to their different characteristics. To provide a supervised signal classification in an efficient framework, we propose a multi-stage waveform classification system, where multiple modular blocks are combined to classify 18 different radar waveforms. In the first stage, we transform the signals into time-frequency images (TFIs) using Fourier-based Synchrosqueezing Transform (FSST) and SqueezeNet to classify the signals into two subsets: P1-4 and others. Then, the subsets are used as inputs to two different systems. These systems use different TFI techniques such as FSST and Smoothed Pseudo Wigner Ville Distribution (SPWVD) for processing and convolutional neural network (CNN) architectures such as Squeezenet, ResNet-50, and ShuffleNet for classification. In experiments, we provide supervised classification results at different signal-to-noise ratio (SNR) levels and achieve 98.08% classification accuracy at 10-dB SNR on a diverse set of frequency and phase modulated signals.en_US
dc.identifier.endpage506en_US
dc.identifier.isbn978-839560205-4
dc.identifier.issn2155-5753en_US
dc.identifier.scopus2-s2.0-85140451210
dc.identifier.startpage501en_US
dc.identifier.urihttp://hdl.handle.net/10679/8618
dc.identifier.wos000943326200081
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherIEEEen_US
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsConvolutional neural networksen_US
dc.subject.keywordsLow probability of intercepten_US
dc.subject.keywordsRadar waveform classificationen_US
dc.subject.keywordsResNet-50en_US
dc.subject.keywordsShort-time autocorrelationen_US
dc.subject.keywordsShuffleNeten_US
dc.subject.keywordsSqueezeneten_US
dc.subject.keywordsTime-frequency transformen_US
dc.subject.keywordsWigner Villeen_US
dc.titleClassifying LPI radar waveforms with time-frequency transformations using multi-stage CNN systemen_US
dc.typeconferenceObjecten_US
dc.type.subtypeConference paper
dspace.entity.typePublication
relation.isOrgUnitOfPublication7b58c5c4-dccc-40a3-aaf2-9b209113b763
relation.isOrgUnitOfPublication.latestForDiscovery7b58c5c4-dccc-40a3-aaf2-9b209113b763

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: