Publication:
Influence maximization in social networks under Deterministic Linear Threshold Model

dc.contributor.authorGürsoy, F.
dc.contributor.authorDanış, Dilek Günneç
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDANIŞ, Dilek Günneç
dc.date.accessioned2019-02-04T13:18:36Z
dc.date.available2019-02-04T13:18:36Z
dc.date.issued2018-12
dc.description.abstractWe define the new Targeted and Budgeted Influence Maximization under Deterministic Linear Threshold Model problem and develop the novel and scalable TArgeted and BUdgeted Potential Greedy (TABU-PG) algorithm which allows for optional methods to solve this problem. It is an iterative and greedy algorithm that relies on investing in potential future gains when choosing seed nodes. We suggest new real-world mimicking techniques for generating influence weights, thresholds, profits, and costs. Extensive computational experiments on four real network (Epinions, Academia, Pokec and Inploid) show that our proposed heuristics perform significantly better than benchmarks. We equip TABU-PG with novel scalability methods which reduce runtime by limiting the seed node candidate pool, or by selecting more nodes at once, trading-off with spread performance.en_US
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1016/j.knosys.2018.07.040en_US
dc.identifier.endpage123en_US
dc.identifier.issn0950-7051en_US
dc.identifier.scopus2-s2.0-85050995370
dc.identifier.startpage111en_US
dc.identifier.urihttp://hdl.handle.net/10679/6135
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2018.07.040
dc.identifier.volume161en_US
dc.identifier.wos000452575500010
dc.language.isoengen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.publisherElsevieren_US
dc.relation.ispartofKnowledge-Based Systems
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsInfluence maximizationen_US
dc.subject.keywordsSocial networksen_US
dc.subject.keywordsDiffusion modelsen_US
dc.subject.keywordsTargeted marketingen_US
dc.subject.keywordsGreedy algorithmen_US
dc.titleInfluence maximization in social networks under Deterministic Linear Threshold Modelen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: