Publication:
Influence maximization in social networks under Deterministic Linear Threshold Model

dc.contributor.authorGürsoy, F.
dc.contributor.authorDanış, Dilek Günneç
dc.contributor.departmentIndustrial Engineering
dc.contributor.ozuauthorDANIŞ, Dilek Günneç
dc.date.accessioned2019-02-04T13:18:36Z
dc.date.available2019-02-04T13:18:36Z
dc.date.issued2018-12
dc.description.abstractWe define the new Targeted and Budgeted Influence Maximization under Deterministic Linear Threshold Model problem and develop the novel and scalable TArgeted and BUdgeted Potential Greedy (TABU-PG) algorithm which allows for optional methods to solve this problem. It is an iterative and greedy algorithm that relies on investing in potential future gains when choosing seed nodes. We suggest new real-world mimicking techniques for generating influence weights, thresholds, profits, and costs. Extensive computational experiments on four real network (Epinions, Academia, Pokec and Inploid) show that our proposed heuristics perform significantly better than benchmarks. We equip TABU-PG with novel scalability methods which reduce runtime by limiting the seed node candidate pool, or by selecting more nodes at once, trading-off with spread performance.
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1016/j.knosys.2018.07.040
dc.identifier.endpage123
dc.identifier.issn0950-7051
dc.identifier.scopus2-s2.0-85050995370
dc.identifier.startpage111
dc.identifier.urihttp://hdl.handle.net/10679/6135
dc.identifier.urihttps://doi.org/10.1016/j.knosys.2018.07.040
dc.identifier.volume161
dc.identifier.wos000452575500010
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofKnowledge-Based Systems
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsInfluence maximization
dc.subject.keywordsSocial networks
dc.subject.keywordsDiffusion models
dc.subject.keywordsTargeted marketing
dc.subject.keywordsGreedy algorithm
dc.titleInfluence maximization in social networks under Deterministic Linear Threshold Model
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: