Publication:
HYGAR: a hybrid genetic algorithm for software architecture recovery

dc.contributor.authorElyasi, Milad
dc.contributor.authorSimitcioğlu, Muhammed Esad
dc.contributor.authorSaydemir, Abdullah
dc.contributor.authorEkici, Ali
dc.contributor.authorSözer, Hasan
dc.contributor.departmentIndustrial Engineering
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorEKİCİ, Ali
dc.contributor.ozuauthorSÖZER, Hasan
dc.contributor.ozugradstudentElyasi, Milad
dc.contributor.ozugradstudentSimitcioğlu, Muhammed Esad
dc.contributor.ozugradstudentSaydemir, Abdullah
dc.date.accessioned2023-07-13T12:49:56Z
dc.date.available2023-07-13T12:49:56Z
dc.date.issued2022
dc.description.abstractGenetic algorithms have been used for clustering modules of a software system in line with the modularity principle. The goal of these algorithms is to recover an architectural view in the form of a modular structural decomposition of the system. We discuss design decisions and variations in existing genetic algorithms devised for this purpose. We introduce HYGAR, a novel hybrid variant of existing algorithms. We apply HYGAR for software architecture recovery of 5 real systems and compare its effectiveness with respect to a baseline and a state-of-the-art hybrid algorithm. Results show that HYGAR outperforms these algorithms in maximizing the modularity of the obtained clustering.en_US
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1145/3477314.3507020en_US
dc.identifier.endpage1424en_US
dc.identifier.scopus2-s2.0-85130329885
dc.identifier.startpage1417en_US
dc.identifier.urihttp://hdl.handle.net/10679/8498
dc.identifier.urihttps://doi.org/10.1145/3477314.3507020
dc.identifier.wos000946564100194
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherACMen_US
dc.relationinfo:turkey/grantAgreement/TUBITAK/120E488
dc.relation.ispartofSAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing
dc.relation.publicationcategoryInternational
dc.rightsinfo:eu-repo/semantics/restrictedAccess
dc.subject.keywordsGenetic algorithmsen_US
dc.subject.keywordsReverse engineeringen_US
dc.subject.keywordsSoftware architecture recoveryen_US
dc.subject.keywordsSoftware modularityen_US
dc.subject.keywordsSoftware module clusteringen_US
dc.titleHYGAR: a hybrid genetic algorithm for software architecture recoveryen_US
dc.typeConference paperen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: