Publication: HYGAR: a hybrid genetic algorithm for software architecture recovery
dc.contributor.author | Elyasi, Milad | |
dc.contributor.author | Simitcioğlu, Muhammed Esad | |
dc.contributor.author | Saydemir, Abdullah | |
dc.contributor.author | Ekici, Ali | |
dc.contributor.author | Sözer, Hasan | |
dc.contributor.department | Industrial Engineering | |
dc.contributor.department | Computer Science | |
dc.contributor.ozuauthor | EKİCİ, Ali | |
dc.contributor.ozuauthor | SÖZER, Hasan | |
dc.contributor.ozugradstudent | Elyasi, Milad | |
dc.contributor.ozugradstudent | Simitcioğlu, Muhammed Esad | |
dc.contributor.ozugradstudent | Saydemir, Abdullah | |
dc.date.accessioned | 2023-07-13T12:49:56Z | |
dc.date.available | 2023-07-13T12:49:56Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Genetic algorithms have been used for clustering modules of a software system in line with the modularity principle. The goal of these algorithms is to recover an architectural view in the form of a modular structural decomposition of the system. We discuss design decisions and variations in existing genetic algorithms devised for this purpose. We introduce HYGAR, a novel hybrid variant of existing algorithms. We apply HYGAR for software architecture recovery of 5 real systems and compare its effectiveness with respect to a baseline and a state-of-the-art hybrid algorithm. Results show that HYGAR outperforms these algorithms in maximizing the modularity of the obtained clustering. | en_US |
dc.description.sponsorship | TÜBİTAK | |
dc.identifier.doi | 10.1145/3477314.3507020 | en_US |
dc.identifier.endpage | 1424 | en_US |
dc.identifier.scopus | 2-s2.0-85130329885 | |
dc.identifier.startpage | 1417 | en_US |
dc.identifier.uri | http://hdl.handle.net/10679/8498 | |
dc.identifier.uri | https://doi.org/10.1145/3477314.3507020 | |
dc.identifier.wos | 000946564100194 | |
dc.language.iso | eng | en_US |
dc.publicationstatus | Published | en_US |
dc.publisher | ACM | en_US |
dc.relation | info:turkey/grantAgreement/TUBITAK/120E488 | |
dc.relation.ispartof | SAC '22: Proceedings of the 37th ACM/SIGAPP Symposium on Applied Computing | |
dc.relation.publicationcategory | International | |
dc.rights | info:eu-repo/semantics/restrictedAccess | |
dc.subject.keywords | Genetic algorithms | en_US |
dc.subject.keywords | Reverse engineering | en_US |
dc.subject.keywords | Software architecture recovery | en_US |
dc.subject.keywords | Software modularity | en_US |
dc.subject.keywords | Software module clustering | en_US |
dc.title | HYGAR: a hybrid genetic algorithm for software architecture recovery | en_US |
dc.type | Conference paper | en_US |
dspace.entity.type | Publication | |
relation.isOrgUnitOfPublication | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b | |
relation.isOrgUnitOfPublication | 85662e71-2a61-492a-b407-df4d38ab90d7 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 5dd73c02-fd2d-43e0-9a23-71bab9ae0b6b |
Files
License bundle
1 - 1 of 1
- Name:
- license.txt
- Size:
- 1.45 KB
- Format:
- Item-specific license agreed upon to submission
- Description: