Publication:
Enhancing the performance of Piezoelectric Energy Harvester under electrostatic actuation using a robust metaheuristic algorithm

dc.contributor.authorFirouzi, Behnam
dc.contributor.authorAbbasi, Ahmad
dc.contributor.authorŞendur, Polat
dc.contributor.departmentMechanical Engineering
dc.contributor.ozuauthorŞENDUR, Polat
dc.contributor.ozugradstudentFirouzi, Behnam
dc.contributor.ozugradstudentAbbasi, Ahmad
dc.date.accessioned2023-09-12T05:46:48Z
dc.date.available2023-09-12T05:46:48Z
dc.date.issued2023-02
dc.description.abstractThis study proposes a novel shape optimization methodology based on evolutionary algorithms to maximize the harvesting energy from piezoelectric energy harvester stimulated by the β-emitted radioisotope. The parametric width function is used to model the piezoelectric layer non-prismatically. All the geometrical dimensions as well as parameters related to the parametric width function are optimized using the metaheuristic algorithms The piezoelectric layer partially covers the beam to obtain the optimal location of the piezoelectric layer. The pull-in instability causes the discharge in the system, and the piezoelectric layer converts the vibration of the released microcantilever into electricity. The nonlinear effects of electrostatic force and geometry are taken into account, and the differential equations governing the system are discretized utilizing the exact mode shapes of the system considering the geometrical effects of non-uniform microcantilever and the piezoelectric layer. The robust chaotic Harris Hawk optimization (RCHHO) algorithm is proposed for finding the optimal shape of the system. The performance of the proposed algorithm is compared with various metaheuristic algorithms in the literature. After optimizing the shape of the piezoelectric layer, the maximum voltage produced with the optimal model using the presented method was 8.105 times that of the classic model with rectangular piezoelectric layer used in previous works. Moreover, the maximum energy and average energy harvested in the optimal model were 61 and 7.22 times, respectively, of the non-optimal model.
dc.identifier.doi10.1016/j.engappai.2022.105619
dc.identifier.issn0952-1976
dc.identifier.scopus2-s2.0-85142753883
dc.identifier.urihttp://hdl.handle.net/10679/8791
dc.identifier.urihttps://doi.org/10.1016/j.engappai.2022.105619
dc.identifier.volume118
dc.identifier.wos000894964700005
dc.language.isoeng
dc.peerreviewedyes
dc.publicationstatusPublished
dc.publisherElsevier
dc.relation.ispartofEngineering Applications of Artificial Intelligence
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsChaotic
dc.subject.keywordsElectrostatic actuation
dc.subject.keywordsEnergy harvesting
dc.subject.keywordsHarris Hawk Optimization
dc.subject.keywordsHHO
dc.subject.keywordsOptimization
dc.subject.keywordsPiezoelectric
dc.subject.keywordsShape optimization
dc.titleEnhancing the performance of Piezoelectric Energy Harvester under electrostatic actuation using a robust metaheuristic algorithm
dc.typearticle
dspace.entity.typePublication
relation.isOrgUnitOfPublicationdaa77406-1417-4308-b110-2625bf3b3dd7
relation.isOrgUnitOfPublication.latestForDiscoverydaa77406-1417-4308-b110-2625bf3b3dd7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description: