Publication:
RANSAC-based training data selection on spectral features for emotion recognition from spontaneous speech

dc.contributor.authorBozkurt, E.
dc.contributor.authorErzin, E.
dc.contributor.authorErdem, Tanju
dc.contributor.authorEroğlu Erdem, Ç.
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorERDEM, Arif Tanju
dc.date.accessioned2016-06-30T12:33:37Z
dc.date.available2016-06-30T12:33:37Z
dc.date.issued2011
dc.description.abstractTraining datasets containing spontaneous emotional speech are often imperfect due the ambiguities and difficulties of labeling such data by human observers. In this paper, we present a Random Sampling Consensus (RANSAC) based training approach for the problem of emotion recognition from spontaneous speech recordings. Our motivation is to insert a data cleaning process to the training phase of the Hidden Markov Models (HMMs) for the purpose of removing some suspicious instances of labels that may exist in the training dataset. Our experiments using HMMs with Mel Frequency Cepstral Coefficients (MFCC) and Line Spectral Frequency (LSF) features indicate that utilization of RANSAC in the training phase provides an improvement in the unweighted recall rates on the test set. Experimental studies performed over the FAU Aibo Emotion Corpus demonstrate that decision fusion configurations with LSF and MFCC based classifiers provide further significant performance improvements.
dc.description.sponsorshipTÜBİTAK
dc.identifier.doi10.1007/978-3-642-25775-9_3
dc.identifier.endpage47
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-82955173848
dc.identifier.startpage36
dc.identifier.urihttp://hdl.handle.net/10679/4254
dc.identifier.urihttps://doi.org/10.1007/978-3-642-25775-9_3
dc.identifier.volume6800
dc.identifier.wos000307258000003
dc.language.isoengen_US
dc.peerreviewedyes
dc.publicationstatuspublisheden_US
dc.publisherSpringer International Publishing
dc.relation.ispartofAnalysis of Verbal and Nonverbal Communication and Enactment. The Processing Issues
dc.relation.projectinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/106E201
dc.relation.projectinfo:eu-repo/grantAgreement/TUBITAK/1001 - Araştırma/110E056
dc.relation.publicationcategoryInternational
dc.rightsrestrictedAccess
dc.subject.keywordsAffect recognition
dc.subject.keywordsEmotional speech classification
dc.subject.keywordsRANSAC
dc.subject.keywordsData cleaning
dc.subject.keywordsDecision fusion
dc.titleRANSAC-based training data selection on spectral features for emotion recognition from spontaneous speechen_US
dc.typebookParten_US
dc.type.subtypeBook chapter
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

Collections