Publication:
MaLeFICE: Machine learning support for continuous performance improvement in computational engineering

dc.contributor.authorSönmezer, Hasan Berk
dc.contributor.authorMuhtaroğlu, Nitel
dc.contributor.authorArı, İsmail
dc.contributor.authorGökçin, Deniz
dc.contributor.departmentComputer Science
dc.contributor.ozuauthorARI, Ismail
dc.contributor.ozugradstudentSönmezer, Hasan Berk
dc.contributor.ozugradstudentMuhtaroğlu, Nitel
dc.contributor.ozugradstudentGökçin, Deniz
dc.date.accessioned2022-09-07T07:00:52Z
dc.date.available2022-09-07T07:00:52Z
dc.date.issued2022-04-25
dc.description.abstractComputer aided engineering (CAE) practices improved drastically within the last decade due to ease of access to computing resources and open-source software. However, increasing complexity of hardware and software settings and the scarcity of multiskilled personnel rendered the practice inefficient and infeasible again. In this article, we present a method for continuous performance improvement in computational engineering that combines online performance profiling with machine learning (ML). To test the viability of this method, we provide a detailed analysis for solution time estimation of finite element analysis (FEA) jobs based on multidimensional models. These models combine numerous matrix features (matrix size, density, bandwidth, etc.), solver features (direct-iterative, preconditioning, tolerance), and hardware features (core count, virtual–physical). We repeat our analysis over different machines as well as docker containers to demonstrate applicability over different platforms. Next, we train supervised and unsupervised ML algorithms over commonly used, realistic FEA benchmarks and compare accuracy of different models. Finally, we design two new ML-based online batch schedulers called shortest predicted time first (SPTF) and shortest cluster time first (SCTF), which are comparable in performance to the optimal, but offline shortest job first (SJF) scheduler. We find that ML-based profiling and scheduling can reduce the average turnaround times by 2x –5x over other alternatives.en_US
dc.identifier.doi10.1002/cpe.6674en_US
dc.identifier.issn1532-0626en_US
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85117046619
dc.identifier.urihttp://hdl.handle.net/10679/7833
dc.identifier.urihttps://doi.org/10.1002/cpe.6674
dc.identifier.volume34en_US
dc.identifier.wos000707186900001
dc.language.isoengen_US
dc.publicationstatusPublisheden_US
dc.publisherWileyen_US
dc.relation.ispartofConcurrency and Computation: Practice and Experience
dc.relation.publicationcategoryInternational Refereed Journal
dc.rightsrestrictedAccess
dc.subject.keywordsBatch schedulingen_US
dc.subject.keywordsClassificationen_US
dc.subject.keywordsClouden_US
dc.subject.keywordsClusteringen_US
dc.subject.keywordsDevOpen_US
dc.subject.keywordsDockeren_US
dc.subject.keywordsFinite element analysisen_US
dc.subject.keywordsMachine learningen_US
dc.subject.keywordsVirtualizationen_US
dc.titleMaLeFICE: Machine learning support for continuous performance improvement in computational engineeringen_US
dc.typearticleen_US
dspace.entity.typePublication
relation.isOrgUnitOfPublication85662e71-2a61-492a-b407-df4d38ab90d7
relation.isOrgUnitOfPublication.latestForDiscovery85662e71-2a61-492a-b407-df4d38ab90d7

Files

License bundle

Now showing 1 - 1 of 1
Placeholder
Name:
license.txt
Size:
1.45 KB
Format:
Item-specific license agreed upon to submission
Description:

Collections