Graduate School of Engineering and Science
Permanent URI for this communityhttps://hdl.handle.net/10679/8952
Browse
Browsing by Rights "Attribution-NonCommercial-NoDerivs 4.0 International"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Open Access Deep transformer-based asset price and direction prediction(IEEE, 2024) Gezici, Abdul Haluk Batur; Sefer, Emre; Computer Science; SEFER, EmreThe field of algorithmic trading, driven by deep learning methodologies, has garnered substantial attention in recent times. Within this domain, transformers, convolutional neural networks, and patch embedding-based techniques have emerged as popular choices within the computer vision community. Here, inspired by the latest cutting-edge computer vision methodologies and the existing work showing the capability of image-like conversion for time-series datasets, we apply more advanced transformer-based and patch-based approaches for predicting asset prices and directional price movements. The employed transformer models include Vision Transformer (ViT), Data Efficient Image Transformers (DeiT), and Swin. We use ConvMixer for a patch embedding-based convolutional neural network architecture without a transformer. Our tested transformer-based and patch-based methodologies aim to predict asset prices and directional movements using historical price data by leveraging the inherent image-like properties within the historical time-series dataset. Before the implementation of attention-based architectures, the historical time series price dataset is transformed into two-dimensional images. This transformation is facilitated through the incorporation of various common technical financial indicators, each contributing to the data for a fixed number of consecutive days. Consequently, a diverse set of two-dimensional images is constructed, reflecting various dimensions of the dataset. Subsequently, the original images depicting market valleys and peaks are annotated with labels such as Hold, Buy, or Sell. According to the experiments, trained attention-based models consistently outperform the baseline convolutional architectures, particularly when applied to a subset of frequently traded Exchange-Traded Funds (ETFs). This better performance of attention-based architectures, especially ViT, is evident in terms of both accuracy and other financial evaluation metrics, particularly during extended testing and holding periods. These findings underscore the potential of transformer-based approaches to enhance predictive capabilities in asset price and directional forecasting. Our code and processed datasets are available at https://github.com/seferlab/price_transformer.ArticlePublication Open Access Depression screening from voice samples of patients affected by parkinson’s disease(S. Karger AG, 2019-05-01) Özkanca, Yasin Serdar; Öztürk, M. G.; Ekmekci, Merve Nur; Atkins, D. C.; Demiroğlu, Cenk; Ghomi, R. H.; Electrical & Electronics Engineering; DEMİROĞLU, Cenk; Özkanca, Yasin Serdar; Ekmekci, Merve NurDepression is a common mental health problem leading to significant disability worldwide. It is not only common but also commonly co-occurs with other mental and neurological illnesses. Parkinson's disease (PD) gives rise to symptoms directly impairing a person's ability to function. Early diagnosis and detection of depression can aid in treatment, but diagnosis typically requires an interview with a health provider or a structured diagnostic questionnaire. Thus, unobtrusive measures to monitor depression symptoms in daily life could have great utility in screening depression for clinical treatment. Vocal biomarkers of depression are a potentially effective method of assessing depression symptoms in daily life, which is the focus of the current research. We have a database of 921 unique PD patients and their self-assessment of whether they felt depressed or not. Voice recordings from these patients were used to extract paralinguistic features, which served as inputs to machine learning and deep learning techniques to predict depression. The results are presented here, and the limitations are discussed given the nature of the recordings which lack language content. Our models achieved accuracies as high as 0.77 in classifying depressed and nondepressed subjects accurately using their voice features and PD severity. We found depression and severity of PD had a correlation coefficient of 0.3936, providing a valuable feature when predicting depression from voice. Our results indicate a clear correlation between feeling depressed and PD severity. Voice may be an effective digital biomarker to screen for depression among PD patients.