Graduate School of Engineering and Science
Permanent URI for this communityhttps://hdl.handle.net/10679/8952
Browse
Browsing by Rights "Attribution 4.0 International"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
ReviewPublication Open Access Critical review of the parameters affecting the effectiveness of moisture absorption treatments used for natural composites(MDPI AG,, 2019) Al-Maharma, Ahmad Yousef Mohammad; Al-Huniti, N.; Al-Maharma, Ahmad Yousef MohammadNatural composites can be fabricated through reinforcing either synthetic or bio-based polymers with hydrophilic natural fibers. Ultimate moisture absorption resistance at the fiber–matrix interface can be achieved when hydrophilic natural fibers are used to reinforce biopolymers due to the high degree of compatibility between them. However, the cost of biopolymers is several times higher than that of their synthetic counterparts, which hinders their dissemination in various industries. In order to produce economically feasible natural composites, synthetic resins are frequently reinforced with hydrophilic fibers, which increases the incompatibility issues such as the creation of voids and delamination at fiber–matrix interfaces. Therefore, applying chemical and/or physical treatments to eliminate the aforementioned drawbacks is of primary importance. However, it is demonstrated through this review study that these treatments do not guarantee a sufficient improvement of the moisture absorption properties of natural composites, and the moisture treatments should be applied under the consideration of the following parameters: (i) type of hosting matrix; (ii) type of natural fiber; (iii) loading of natural fiber; (iv) the hybridization of natural fibers with mineral/synthetic counterparts; (v) implantation of nanofillers. Complete discussion about each of these parameters is developed through this study.ArticlePublication Open Access Data fusion analysis and synthesis framework for improving disaster situation awareness(MDPI, 2023-09) Aksit, M.; Say, Hanne; Eren, Mehmet Arda; de Camargo, V. V.; Say, Hanne; Eren, Mehmet ArdaTo carry out required aid operations efficiently and effectively after an occurrence of a disaster such as an earthquake, emergency control centers must determine the effect of disasters precisely and and in a timely manner. Different kinds of data-gathering techniques can be used to collect data from disaster areas, such as sensors, cameras, and unmanned aerial vehicles (UAVs). Furthermore, data-fusion techniques can be adopted to combine the data gathered from different sources to enhance the situation awareness. Recent research and development activities on advanced air mobility (AAM) and related unmanned aerial systems (UASs) provide new opportunities. Unfortunately, designing these systems for disaster situation analysis is a challenging task due to the topological complexity of urban areas, and multiplicity and variability of the available data sources. Although there are a considerable number of research publications on data fusion, almost none of them deal with estimating the optimal set of heterogeneous data sources that provide the best effectiveness and efficiency value in determining the effect of disasters. Moreover, existing publications are generally problem- and system-specific. This article proposes a model-based novel analysis and synthesis framework to determine the optimal data fusion set among possibly many alternatives, before expensive implementation and installation activities are carried out.ReviewPublication Open Access Deep learning-based expressive speech synthesis: a systematic review of approaches, challenges, and resources(Springer, 2024-02-12) Barakat, Huda Mohammed Mohammed; Turk, O.; Demiroğlu, Cenk; Electrical & Electronics Engineering; DEMİROĞLU, Cenk; Barakat, Huda Mohammed MohammedSpeech synthesis has made significant strides thanks to the transition from machine learning to deep learning models. Contemporary text-to-speech (TTS) models possess the capability to generate speech of exceptionally high quality, closely mimicking human speech. Nevertheless, given the wide array of applications now employing TTS models, mere high-quality speech generation is no longer sufficient. Present-day TTS models must also excel at producing expressive speech that can convey various speaking styles and emotions, akin to human speech. Consequently, researchers have concentrated their efforts on developing more efficient models for expressive speech synthesis in recent years. This paper presents a systematic review of the literature on expressive speech synthesis models published within the last 5 years, with a particular emphasis on approaches based on deep learning. We offer a comprehensive classification scheme for these models and provide concise descriptions of models falling into each category. Additionally, we summarize the principal challenges encountered in this research domain and outline the strategies employed to tackle these challenges as documented in the literature. In the Section 8, we pinpoint some research gaps in this field that necessitate further exploration. Our objective with this work is to give an all-encompassing overview of this hot research area to offer guidance to interested researchers and future endeavors in this field.Conference ObjectPublication Open Access The effect of interface gradient distribution on unrealistic flow in 3D droplet simulations(Europe, Institute for Liquid Atomization and Spray Systems, ILASS, 2021-08-31) Yılmaz, Anıl; Kayansalçik, Gökhan; Ertunç, Özgür; Mechanical Engineering; ERTUNÇ, Özgür; Yılmaz, Anıl; Kayansalçik, GökhanThe purpose of this study is to investigate the origin of the parasitic current to provide accurate prediction of droplet surface interactions in Volume of Fluid (VOF) framework. The deformation of the droplet due to parasitic current has been the most important problem in 3D simulations. Parasitic current is influenced by curvature and surface normal estimation in the Continuum Surface Force (CSF) model. It has been shown that the number of neighboring cells of the central cell influences the gradient calculations regarding the generation of parasitic current. It has been observed that the polyhedral cell structure delivers a smoother interface gradient distribution than the cartesian cell structure. To examine the dynamics in different physical conditions, we compared simulations with base experiments to understand whether those models work. We then simulated droplet cases on stationary and moving wall conditions, and simulation results were consistent with experimental results.ArticlePublication Open Access Towards interactive explanation-based nutrition virtual coaching systems(Springer, 2024-01) Buzcu, Berk; Tessa, M.; Tchappi, I.; Najjar, A.; Hulstijn, J.; Calvaresi, D.; Aydoğan, Reyhan; Computer Science; AYDOĞAN, Reyhan; Buzcu, BerkThe awareness about healthy lifestyles is increasing, opening to personalized intelligent health coaching applications. A demand for more than mere suggestions and mechanistic interactions has driven attention to nutrition virtual coaching systems (NVC) as a bridge between human–machine interaction and recommender, informative, persuasive, and argumentation systems. NVC can rely on data-driven opaque mechanisms. Therefore, it is crucial to enable NVC to explain their doing (i.e., engaging the user in discussions (via arguments) about dietary solutions/alternatives). By doing so, transparency, user acceptance, and engagement are expected to be boosted. This study focuses on NVC agents generating personalized food recommendations based on user-specific factors such as allergies, eating habits, lifestyles, and ingredient preferences. In particular, we propose a user-agent negotiation process entailing run-time feedback mechanisms to react to both recommendations and related explanations. Lastly, the study presents the findings obtained by the experiments conducted with multi-background participants to evaluate the acceptability and effectiveness of the proposed system. The results indicate that most participants value the opportunity to provide feedback and receive explanations for recommendations. Additionally, the users are fond of receiving information tailored to their needs. Furthermore, our interactive recommendation system performed better than the corresponding traditional recommendation system in terms of effectiveness regarding the number of agreements and rounds.Conference ObjectPublication Open Access Validation and comparison of 2D and 3D numerical simulations of flow in simplex nozzles(Europe, Institute for Liquid Atomization and Spray Systems, ILASS, 2021-08-31) Bal, M.; Kayansalçik, Gökhan; Ertunç, Özgür; Böke, Y. E.; Mechanical Engineering; ERTUNÇ, Özgür; Kayansalçik, GökhanNumerical simulations of pressure swirl atomizers are computationally expensive due to transient and multiphase flow behavior. In this study, 2D and 3D VOF simulations are performed for a geomerty which has high swirl chamber length-to-diameter ratio of 1.33. discharge coefficient (CD) and spray angle values are compared to the experimental data. Moreover, a benchmark study is conducted between 2D and 3D methods in terms of accuracy, computational cost and flow variables such as orifice exit axial and tangential velocity. The simulations are performed using a hybrid RANS-LES approach, IDDES model. It is observed that 2D simulation has lower accuracy in the validation parameters such as discharge coefficient and spray angle as compared to the 3D simulation. The main reason for 2D simulation inaccuracy might be the tangential port inlet effects and wrong estimation of the loss of swirl inside the swirl chamber. On the other hand, 2D simulations have approximately 1000 times lower computational cost than 3D simulations.