Industrial Engineering
Permanent URI for this collectionhttps://hdl.handle.net/10679/45
Browse
Browsing by Rights "Attribution-NonCommercial-NoDerivatives 4.0 International"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Open Access Deep reinforcement learning approach for trading automation in the stock market(IEEE, 2022) Kabbani, Taylan; Duman, Ekrem; Industrial Engineering; DUMAN, Ekrem; Kabbani, TaylanDeep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems. The automation of profit generation in the stock market is possible using DRL, by combining the financial assets price 'prediction' step and the 'allocation' step of the portfolio in one unified process to produce fully autonomous systems capable of interacting with their environment to make optimal decisions through trial and error. This work represents a DRL model to generate profitable trades in the stock market, effectively overcoming the limitations of supervised learning approaches. We formulate the trading problem as a Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the stock market, such as liquidity and transaction costs. We then solve the formulated POMDP problem using the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on unseen data set (test data). From the point of view of stock market forecasting and the intelligent decision-making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of machine learning and proves its credibility and advantages in strategic decision-making.Conference ObjectPublication Open Access Stochastic production planning with flexible manufacturing systems and uncertain demand: A column generation-based approach(Elsevier, 2022) Elyasi, Milad; Özener, Başak Altan; Ekici, Ali; Özener, Okan Örsan; Yanıkoğlu, İhsan; Economics; Industrial Engineering; ÖZENER, Başak Altan; EKİCİ, Ali; ÖZENER, Okan ÖrsanThe ongoing pandemic, namely COVID-19, has rendered widespread economic disorder. The deficiencies have delayed production at manufacturers in several industries on the supply side. The effects of disruption were more notable for industries with longer supply chains, especially reaching East Asia. Regarding the demand, sectors can be divided into three categories: i) the ones, like e-commerce companies, that experienced augmented demand; ii) the ones with a plunged demand, like what hotels and restaurants experience; iii) the companies experiencing a roller-coaster-ride business. After mitigation efforts, the economy started recovering, resulting in increased demand. However, regardless of their struggles, the companies have not fully returned to their pre-pandemic levels. One of the strategies to gain resilience in its supply chain and manage the disruptions is to employ flexible/hybrid manufacturing systems. This paper considers a flexible/hybrid manufacturing production setting with typically dedicated machinery to satisfy regular demand and a flexible manufacturing system (FMS) to handle surge demand. We model the uncertainty in demand using a scenario-based approach and allow the business to make here-and-now and wait-and-see decisions exploiting the cost-effectiveness of the standard production and responsiveness of the FMS. We propose a column generation-based algorithm as the solution approach. Our computational analysis shows that this hybrid production setting provides highly robust response to the uncertainty in demand, even with high fluctuations.