Graduate School of Engineering and Science
Permanent URI for this communityhttps://hdl.handle.net/10679/8952
Browse
Browsing by Institution Author "GÖKTÜRK, Elvin Çoban"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Book PartPublication Metadata only Post-disaster damage assessment using drones in a remote communication setting(Springer, 2023) Yücesoy, Ecem; Göktürk, Elvin Çoban; Koyuncu, Burcu Balçık; Industrial Engineering; GÖKTÜRK, Elvin Çoban; KOYUNCU, Burcu Balçık; Yücesoy, EcemAfter a disaster event, obtaining fast and accurate information about the damaged built-in structure is crucial for planning life-saving response operations. Unmanned aerial vehicles (UAVs), known otherwise as drones, are increasingly utilized to support damage assessment activities as a part of humanitarian operations. In this study, we focus on a post-disaster setting where the drones are utilized to scan a disaster-affected area to gather information on the damage levels. The affected area is assumed to be divided into grids with varying criticality levels. We consider en-route recharge stations to address battery limitations and remote information transmission to a single operation center. We address the problem of determining the routes of a set of drones across a given assessment horizon to maximize the number of visited grids considering their criticality levels and transmit the collected assessment information as quickly as possible along the routes. We propose a mixed integer linear programming formulation to solve this problem and also adapt it to a setting where the information transmission is only possible at the end of the routes for comparison purposes. We propose performance metrics to evaluate the performance of our model and present results on small-sized instances with sensitivity analysis. We present results that highlight the tradeoff between attained coverage (visiting more grids) and response time (the timing of information transmission in the scanned areas). Moreover, we show the advantage of en-route data transmission compared to the setting with data transmission at the end of the routes.ArticlePublication Open Access A predictive multistage postdisaster damage assessment framework for drone routing(Wiley, 2024-01) Adsanver, Birce; Göktürk, Elvin Çoban; Koyuncu, Burcu Balçık; Industrial Engineering; GÖKTÜRK, Elvin Çoban; Adsanver, BirceThis study focuses on postdisaster damage assessment operations supported by a set of drones. We propose a multistage framework, consisting of two phases applied iteratively to rapidly gather damage information within an assessment period. In the initial phase, the problem involves determining areas to be scanned by each drone and the optimal sequence for visiting these selected areas. We have adapted an electric vehicle routing formulation and devised a variable neighborhood descent heuristic for this phase. In the second phase, information collected from the scanned areas is employed to predict the damage status of the unscanned areas. We have introduced a novel, fast, and easily implementable imputation policy for this purpose. To evaluate the performance of our approach in real-life disasters, we develop a case study for the expected 7.5 magnitude earthquake in Istanbul, Turkey. Our numerical study demonstrates a significant improvement in response time and priority-based metrics.