Graduate School of Engineering and Science
Permanent URI for this communityhttps://hdl.handle.net/10679/8952
Browse
Browsing by Institution Author "BUNDUR, Zeynep Başaran"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Metadata only Automated flow rate control of extrusion for 3D concrete printing incorporating rheological parameters(Elsevier, 2024-04) Ahi, Oğulcan; Ertunç, Özgür; Bundur, Zeynep Başaran; Bebek, Özkan; Civil Engineering; Mechanical Engineering; ERTUNÇ, Özgür; BUNDUR, Zeynep Başaran; BEBEK, Özkan; Ahi, OğulcanThe use of inline quality assessment technologies is of great importance in meeting the consistent extrusion requirements of 3D concrete printing (3DCP) applications. This paper presents a system to regulate extrusion speed and maintain the flow rate at a target value during 3DCP processes. The system is based on a new equation that combines printing parameters and the material's rheological properties in the printing process. The proposed control strategy is designed to effectively function with various cement-based mixtures. Validation tests demonstrate that the proposed system can maintain an instantaneous flow rate within a certain range and eventually achieve a constant flow rate. During operation, the flow rate is consistently maintained around the targeted value with an average error rate of 6.7 percent. The flow rate control mechanism shows promise as a reliable and efficient solution for achieving precise and constant flow rates, regardless of the cement mix design used.Conference ObjectPublication Open Access Two-part bio-based self-healing repair agent for cement-based mortar(International Center for Numerical Methods in Engineering, 2020) Tezer, Mustafa Mert; Bundur, Zeynep Başaran; Civil Engineering; BUNDUR, Zeynep Başaran; Tezer, Mustafa MertFactors affecting durability of concrete structures are generally associated with each other. Due to its brittle nature, concrete can crack under stress and these cracks are one of the main reasons for a decrease in service life in concrete structures. Therefore, it is crucial to detect and recover microcracks, then to repair them as they were developed to wider cracks. Recent research in the field of concrete materials suggested that it might be possible to develop a smart cement-based material that is capable of remediate cracks by triggering biogenic calcium carbonate (CaCO3) precipitaton. This paper summarizes a study undertaken to investigate the self-healing efficiency of Sporosarcina pasteurii (S. pasteurii) cells immobilized on both diatomaceous earth and pumice, to remediate flexural cracks on mortar in early ages (28 days after mixing). To obtain a two-phase bio additive, half of the minerals were saturated with a nutrient medium consisting of urea, corn-steep liqueur(CSL) and calcium acetate and the cells with immobilized to the other half without nutrients. Screening of the healing process was done with ultrasonic pulse velocity (UPV) testing and stereomicroscopy. With this approach, the cracks on mortar surface were sealed and the water absorption capacity of the so-called self-healed mortar decreased compared to its counterpart cracked mortar samples.