Computer Science
Permanent URI for this collectionhttps://hdl.handle.net/10679/9120
Browse
Browsing by Institution Author "KIRAÇ, Mustafa Furkan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference ObjectPublication Metadata only A benchmark for inpainting of clothing images with irregular holes(Springer, 2020) Kınlı, Osman Furkan; Özcan, Barış; Kıraç, Mustafa Furkan; Computer Science; KINLI, Osman Furkan; KIRAÇ, Mustafa Furkan; Özcan, BarışFashion image understanding is an active research field with a large number of practical applications for the industry. Despite its practical impacts on intelligent fashion analysis systems, clothing image inpainting has not been extensively examined yet. For that matter, we present an extensive benchmark of clothing image inpainting on well-known fashion datasets. Furthermore, we introduce the use of a dilated version of partial convolutions, which efficiently derive the mask update step, and empirically show that the proposed method reduces the required number of layers to form fully-transparent masks. Experiments show that dilated partial convolutions (DPConv) improve the quantitative inpainting performance when compared to the other inpainting strategies, especially it performs better when the mask size is 20% or more of the image.Conference ObjectPublication Metadata only Deterministic neural illumination mapping for efficient auto-white balance correction(IEEE, 2023) Kınlı, Osman Furkan; Yılmaz, Doğa; Özcan, Barış; Kıraç, Mustafa Furkan; Computer Science; KINLI, Osman Furkan; KIRAÇ, Mustafa Furkan; Yılmaz, Doğa; Özcan, BarışAuto-white balance (AWB) correction is a critical operation in image signal processors for accurate and consistent color correction across various illumination scenarios. This paper presents a novel and efficient AWB correction method that achieves at least 35 times faster processing with equivalent or superior performance on high-resolution images for the current state-of-the-art methods. Inspired by deterministic color style transfer, our approach introduces deterministic illumination color mapping, leveraging learnable projection matrices for both canonical illumination form and AWB-corrected output. It involves feeding high-resolution images and corresponding latent representations into a mapping module to derive a canonical form, followed by another mapping module that maps the pixel values to those for the corrected version. This strategy is designed as resolution-agnostic and also enables seamless integration of any pre-trained AWB network as the backbone. Experimental results confirm the effectiveness of our approach, revealing significant performance improvements and reduced time complexity compared to state-of-the-art methods. Our method provides an efficient deep learning-based AWB correction solution, promising real-time, high-quality color correction for digital imaging applications.