Faculty of Engineering
Permanent URI for this communityhttps://hdl.handle.net/10679/10
Browse
Browsing by Indexed at "WOS"
Now showing 1 - 20 of 751
- Results Per Page
- Sort Options
Conference ObjectPublication Open Access 3-D dynamic walking trajectory generation for a bipedal exoskeleton with underactuated legs: A proof of concept(IEEE, 2019-06) Soliman, Ahmed Fahmy; Şendur, Polat; Uğurlu, Regaip Barkan; Mechanical Engineering; ŞENDUR, Polat; UĞURLU, Regaip Barkan; Soliman, Ahmed FahmyThis paper presents a framework to address three dimensional (3-D) dynamic walking for a bipedal exoskeleton with underactuated legs. To achieve this goal, the framework is constructed via a trajectory generator and an optimized inverse kinematics algorithm that can cope with underactuation. In order to feasibly attain task velocities with underactuated legs, the inverse kinematics algorithm makes use of a task prioritization method via the exploitation of null space. In doing so, the tasks with lower priority, e.g., swing foot orientation, are attained as much as possible without disrupting the higher priority tasks, such as CoM trajectory. Meanwhile, the trajectory generator utilizes the ZMP concept analytically and ensures the acceleration continuity throughout the whole walking period, regardless of the contact and phase changes. The proposed method is verified via a lumped human-bipedal exoskeleton model that is developed and simulated in MSC.ADAMS simulation environment. As a result, we obtained feasible and dynamically balanced 3-D walking motion, in which no oblique foot landing or exaggerated torso orientation variations were observed, despite the underactuated nature of the robot legs.ArticlePublication Metadata only 3D simulation of droplet impact on static and moving walls(Begell House Inc., 2022) Yılmaz, Anıl; Kayansalçik, Gökhan; Ertunç, Özgür; Mechanical Engineering; ERTUNÇ, Özgür; Yılmaz, Anıl; Kayansalçik, GökhanIn the present study, the contact angle model and the origin of the parasitic current, precisely, the relation of the parasitic current with grid distribution, have been studied to accurately predict droplet impact on static and moving walls in the volume of fluid (VOF) framework. The authors have quantitatively shown that the number of neighboring cells of the central cell influences the gradient calculations regarding the generation and spatial distribution of parasitic current. Accordingly, the polyhedral cell structure provides smoother interface gradient distribution than the Cartesian grid structure. After implementing a modified Kistler contact angle model in OpenFOAM and using the polyhedral grid for the simulations, we could accurately validate transient droplet shapes formed upon impact with those obtained from experiments. Droplet outcomes obtained, such as deposition, partial rebound, and split deposition on stationary and moving smooth surfaces, are consistent with experimental results.ArticlePublication Metadata only Acoustics and heat transfer characteristics of piezoelectric driven central orifice synthetic jet actuators(Taylor & Francis, 2022-09-19) Ikhlaq, M.; Yasir, M.; Ghaffari, O.; Arık, Mehmet; Mechanical Engineering; ARIK, MehmetGrowth in computational capacity combined with a decrease in the size of digital devices has led to increasing demand for more active and efficient cooling of electronics. In this study, an experimental investigation into two different sizes of central orifice Synthetic Jet Actuators (SJAs) is conducted to evaluate their heat transfer as well as noise generation characteristics. Two SJAs (40 mm and 20 mm) are examined, covering a distinct span of frequencies ranging from low to medium (<5500 Hz) in regards to the effect of SJA size over performance. The SJAs’ disk deflection, structural frequency, and jet exit velocity were measured to fully characterize the jet performance. The maximum Nusselt number for the largest SJA was 3 times more than the smallest SJA, where the evaluation of stroke length suggests no effective synthetic jet formation for the smallest SJA. The noise from the SJAs was measured in an anechoic chamber using three microphones, Fast Fourier Transform (FFT) of the sound pressure levels provide contributions to different tones in the resulting noise. 1/3 Octave Constant Percentage Bandwidth (CPB) analysis was performed to identify the frequency bands making the largest contribution to the noise. The largest SJA showed the highest heat transfer at acceptable noise levels during the operation below resonance frequency.ArticlePublication Open Access Active-grid turbulence effect on the topology and the flame location of a lean premixed combustion(Society of Thermal Engineers of Serbia, 2018) Alhumairi, Mohammed Khudhair Abbas; Ertunç, Özgür; Mechanical Engineering; ERTUNÇ, Özgür; Alhumairi, Mohammed Khudhair AbbasLean premixed combustion under the influence of active-grid turbulence was computationally investigated, and the results were compared with experimental data. The experiments were carried out to generate a premixed flame at a thermal load of 9 kW from a single jet flow combustor. Turbulent combustion models, such as the coherent flame model (CFM) and turbulent flame speed closure (TFC) model were implemented for the simulations performed under different turbulent flow conditions, which were specified by the Reynolds number based on Taylor’s microscale (Reλ), the dissipation rate of turbulence (ε) and turbulent kinetic energy (k). This study shows that the applied turbulent combustion models differently predict the flame topology and location. However, similar to the experiments, simulations with both models revealed that the flame moves toward the inlet when turbulence becomes strong at the inlet, that is, when Reλ at the inlet increases. The results indicated that the flame topology and location in the coherent flame model were more sensitive to turbulence than those in the turbulent flame speed closure model. The flame location behavior on the jet flow combustor significantly changed with the increase of Reλ.ArticlePublication Open Access Actor-critic reinforcement learning for bidding in bilateral negotiation(TÜBİTAK, 2022) Arslan, Furkan; Aydoğan, Reyhan; Computer Science; AYDOĞAN, Reyhan; Arslan, FurkanDesigning an effective and intelligent bidding strategy is one of the most compelling research challenges in automated negotiation, where software agents negotiate with each other to find a mutual agreement when there is a conflict of interests. Instead of designing a hand-crafted decision-making module, this work proposes a novel bidding strategy adopting an actor-critic reinforcement learning approach, which learns what to offer in a bilateral negotiation. An entropy reinforcement learning framework called Soft Actor-Critic (SAC) is applied to the bidding problem, and a self-play approach is employed to train the model. Our model learns to produce the target utility of the coming offer based on previous offer exchanges and remaining time. Furthermore, an imitation learning approach called behavior cloning is adopted to speed up the learning process. Also, a novel reward function is introduced that does take not only the agent’s own utility but also the opponent’s utility at the end of the negotiation. The developed agent is empirically evaluated. Thus, a large number of negotiation sessions are run against a variety of opponents selected in different domains varying in size and opposition. The agent’s performance is compared with its opponents and the performance of the baseline agents negotiating with the same opponents. The empirical results show that our agent successfully negotiates against challenging opponents in different negotiation scenarios without requiring any former information about the opponent or domain in advance. Furthermore, it achieves better results than the baseline agents regarding the received utility at the end of the successful negotiations.Conference ObjectPublication Metadata only Adaptive DCO-OFDM for underwater visible light communications(IEEE, 2019-04) Elamassie, Mohammed; Karbalayghareh, Mehdi; Miramirkhani, Farshad; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Elamassie, Mohammed; Karbalayghareh, Mehdi; Miramirkhani, FarshadVisible light communication (VLC) has been introduced as a complementary technology to acoustic communications for underwater applications. Underwater VLC can achieve much higher data rates sufficiently high for real-time image and video transmission. Such high data rates over underwater channels with frequency-selectivity necessitate the use of efficient multi-carrier techniques such as orthogonal frequency division multiplexing. In this paper, we consider an adaptive DC-biased optical OFDM (DCO-OFDM) underwater VLC system. The design of adaptive algorithm is formulated to maximize the throughput under error rate performance constraints. The receiver first calculates the signal-to-noise ratio (SNR) per each subcarrier. Then, based on SNR information, it determines which subcarrier should be loaded first and selects the maximum constellation size for each subcarrier while satisfying a predefined targeted bit error rate (BER). Our simulation results demonstrated that significant improvements in throughput can be obtained through link adaptation.Conference ObjectPublication Metadata only An adaptive modulation scheme for coded free-space optical systems(IEEE, 2014) Hariq, S. H.; Odabasioglu, N.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratFor very slowly-varying fading channels as in the case of atmospheric turbulence-induced fading, it is possible to reliably estimate the channel state information and send it back to the transmitter. The transmitter can use this information to vary the transmission parameters such as power, modulation size, code rate etc according to the channel conditions. This is known as link adaptation. In this paper, we consider a turbo-coded free-space optical (FSO) system with M-ary pulse position modulation over log-normal turbulence channels and propose an adaptive modulation scheme under peak power constraints. Our simulation results demonstrate significant performance improvements of the proposed adaptive scheme over non-adaptive counterparts.Conference ObjectPublication Metadata only Adaptive relay selection method for asynchronous amplify and forward cooperative communications(IEEE, 2016) Celik, Y.; Odabasioglu, N.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratIn this paper, we propose a new adaptive relay selection method named as Adaptive Best Relay Assessment (ABRA) for cooperative communication with amplify and forward (AF) relaying. ABRA is based on two relay selection criteria which are cascaded channel gain coefficient and cascaded time offset in source-relay-destination (S-R-D) channel. Our simulation results demonstrate that the channel gain coefficient is the best criteria at low signal-to-noise ratio (SNR) regimes and time offset at high SNR regimes. Therefore, we combine these two criteria to select best relay for all SNR values. Finally, ABRA achieves the best bit error rate (BER) performance in asynchronous AF cooperative communications for three different path gain ratios 30 dB, 0 dB, and -30 dB.Conference ObjectPublication Metadata only Adaptive shared control with human intention estimation for human agent collaboration(IEEE, 2022) Amirshirzad, Negin; Uğur, E.; Bebek, Özkan; Öztop, Erhan; Computer Science; Mechanical Engineering; BEBEK, Özkan; ÖZTOP, Erhan; Amirshirzad, NeginIn this paper an adaptive shared control frame-work for human agent collaboration is introduced. In this framework the agent predicts the human intention with a confidence factor that also serves as the control blending parameter, that is used to combine the human and agent control commands to drive a robot or a manipulator. While performing a given task, the blending parameter is dynamically updated as the result of the interplay between human and agent control. In a scenario where additional trajectories need to be taught to the agent, either new human demonstrations can be generated and given to the learning system, or alternatively the aforementioned shared control system can be used to generate new demonstrations. The simulation study conducted in this study shows that the latter approach is more beneficial. The latter approach creates improved collaboration between the human and the agent, by decreasing the human effort and increasing the compatibility of the human and agent control commands.Conference ObjectPublication Metadata only Adaptive unipolar MIMO-OFDM for visible light communications(IEEE, 2019) Al-Nahhal, Mohamed; Basar, E.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Al-Nahhal, MohamedUnipolar orthogonal frequency division multiplexing (U-OFDM) appears as an attractive optical OFDM solution for emerging visible light communication (VLC) systems. This paper proposes spectral efficiency improvement for U-OFDM systems by applying adaptive transmission over realistic VLC links. This adaptive transmission includes switching among a number of multiple-input multiple-output (MIMO) modes combined with appropriate modulation size selection. The considered MIMO modes are repetition coding, spatial modulation, and spatial multiplexing, where each mode supports different modulation sizes. The selection of the corresponding MIMO mode and its modulation size is based on the received signal-to-noise ratio and target bit error rate. The proposed U-OFDM system is applied over different VLC MIMO setups with realistic channel models for 8 x 8, 4 x 4 and 2 x 2 MIMO systems. Our simulation results show that the proposed adaptive system provides a significant spectral efficiency improvement over stand-alone U-OFDM MIMO modes/setups.ArticlePublication Metadata only Alignment of the CMS tracker with LHC and cosmic ray data(IOP Publishing, 2014-06) Chatrchyan, S.; Işıldak, Bora; The CMS Collaboration; Natural and Mathematical Sciences; IŞILDAK, BoraResults are reported from a search for supersymmetry in pp collisions at a center-of-mass energy of 8 TeV, based on events with a single isolated lepton (electron or muon) and multiple jets, at least two of which are identified as b jets. The data sample corresponds to an integrated luminosity of 19.3 fb(-1) recorded by the CMS experiment at the LHC in 2012. The search is motivated by supersymmetric models that involve strong-production processes and cascade decays of new particles. The resulting final states contain multiple jets as well as missing transverse momentum from weakly interacting particles. The event yields, observed across several kinematic regions, are consistent with the expectations from standard model processes. The results are interpreted in the context of simplified supersymmetric scenarios with pair production of gluinos, where each gluino decays to a top quark-antiquark pair and the lightest neutralino. For the case of decays via virtual top squarks, gluinos with a mass smaller than 1.26 TeV are excluded for low neutralino massesArticlePublication Metadata only All-optical amplify-and-forward relaying system for atmospheric channels(IEEE, 2012-10) Aminikashani, Mohammadreza; Rad, M. M.; Safari, M.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Aminikashani, MohammadrezaIn this letter, we investigate the performance of a dual-hop free space optical link with an all-optical amplify-and-forward relay. We employ photon counting methodology and derive closed form expressions for the end-to-end signal-to-noise ratio and the outage probability. In our derivations, we consider either full or partial channel state information (CSI) at the relay and take into account practical limitations such as amplifier noise and filtering effects. Our results indicate significant performance improvements over direct transmission and furthermore demonstrate that semi-blind relaying (which depends only on statistical CSI) provides nearly identical performance to its full-CSI counterpart.ArticlePublication Metadata only Analysis of asynchronous cognitive radio system with imperfect sensing and bursty primary user traffic(Springer Science+Business Media, 2016-03) Ercan, Ali Özer; Electrical & Electronics Engineering; ERCAN, Ali ÖzerThis paper presents a theoretical analysis of the spectrum utilization levels in a cognitive radio system. We assume that the traffic of the primary network is bursty and asynchronous with the secondary network, which performs imperfect spectrum sensing. Collisions of the primary and the secondary packets are assumed to result in increased packet error probabilities. We present primary and secondary utilization levels under optimized secondary transmission periods for varying primary traffic characteristics and secondary sensing performance levels. The results are also validated by extensive Monte Carlo simulations. We find that an asynchronous cognitive radio network with imperfect spectrum sensing is feasible when optimized transmission periods are used. The effects of primary traffic’s burst pattern and secondary sensing performance are discussed.ArticlePublication Metadata only Analysis of near-field radiation transfer within nano-gaps using FDTD method(Elsevier, 2014-10) Didari, Azadeh; Mengüç, Mustafa Pınar; Mechanical Engineering; MENGÜÇ, Mustafa Pınar; Didari, AzadehEnhancement of near-field radiative emission via coupling of surface plasmons in nano-gaps formed between thin films is important for understanding and implementation of energy harvesting using nano-thermophotovoltaic cells. Design and construction of such cells need to be carried out along with detailed modeling studies, necessitating accurate calculation of near-field emission within thin films. The objective of this paper is to provide a methodology based on finite difference time domain analysis for the calculation of the near-field thermal radiation emission based on local density of electromagnetic states. Near-field thermal emission is investigated within the nano-gap formed between thin silicon carbide layers where both support surface phonon polaritons. Modeling of this problem with the FDTD method is not trivial particularly for establishing the Drude–Lorentz permittivity model and the selection of the right boundary conditions. We present an effective boundary condition, for calculation of Local Density Of electromagnetic States (LDOS) via Finite Difference Time Domain Method (FDTD) for applications to nano-scale geometries. We conclude that Convolutional Perfectly Matched Layer (CPML) is the optimum boundary condition that gives the most accurate results compared against the other methodologies for parallel plates separated by nano-gaps. This boundary condition allows more streamlined simulations to be carried out when working with sub-wavelength structures. The challenges and the possible solutions to overcome these difficulties are discussed in detail.ArticlePublication Metadata only Analysis of vibratory gyroscopes: drive and sense mode resonance shift by coriolis force(IEEE, 2017) Cetin, Hakan; Yaralıoğlu, Göksen Göksenin; Electrical & Electronics Engineering; YARALIOĞLU, Göksen Göksenin; Cetin, HakanIn this paper, we demonstrate the analysis of coupling between drive and sense systems of vibratory gyroscopes. Vibratory gyroscopes have attracted a lot of interest recently with the development of MEMS gyroscopes. These gyroscopes made their way through portable devices and smart phones. Novel gyroscope architectures have been proposed and analyzed in detail. However, in most of these analyses, coupling between the sense and drive systems was ignored. We analytically show that drive and sense systems are coupled together via Coriolis and centrifugal force. As a result, system resonances shift as the rotation rate increase for linear and torsional gyroscope systems. Starting from a simple gyro system, we calculated the sense and drive resonant frequency shifts in various configurations. Then, for more complex systems where analytical solution is difficult to obtain, we used commercially available FEM tools to determine corresponding frequency shift. In general, we found that the shift is small and can be ignored for linear vibratory gyroscopes where Q of the sense system is less than 2500 for mode matched gyros. But for higher Q systems, the frequency shift may affect the linearity of these gyroscopes. This sets a fundamental limit for the linearity of vibratory gyroscopes. Based on our calculations the non-linearity is above 1% for linear 2-DOF mode-matched vibratory gyroscopes where Q is above 3000 and for torsional 2-DOF vibratory gyroscopes where Q is above 600. Multi-DOF and ring vibratory gyroscopes are also examined. We find that the effect is less pronounced for Multi-DOF gyros, whereas there is a large effect on the linearity of ring gyroscopes.ArticlePublication Metadata only Angular analysis and branching fraction measurement of the decay B-0 -> K*(0)mu(+)mu(-)(Elsevier, 2013-11-25) Chatrchyan, S.; Işıldak, Bora; The CMS Collaboration; Natural and Mathematical Sciences; IŞILDAK, BoraThe angular distributions and the differential branching fraction of the decay B0→K⁎(892)0μ+μ− are studied using a data sample corresponding to an integrated luminosity of 5.2 fb−1 collected with the CMS detector at the LHC in pp collisions at View the MathML source. From more than 400 signal decays, the forward–backward asymmetry of the muons, the K⁎(892)0 longitudinal polarization fraction, and the differential branching fraction are determined as a function of the square of the dimuon invariant mass. The measurements are in good agreement with standard model predictions.ArticlePublication Metadata only Anti-spoofing for text-independent speaker verification: An initial database, comparison of countermeasures, and human performance(IEEE, 2016-04) Wu, Z.; Leon, P. L. de; Demiroğlu, Cenk; Khodabakhsh, Ali; Electrical & Electronics Engineering; DEMİROĞLU, Cenk; Khodabakhsh, AliIn this paper, we present a systematic study of the vulnerability of automatic speaker verification to a diverse range of spoofing attacks. We start with a thorough analysis of the spoofing effects of five speech synthesis and eight voice conversion systems, and the vulnerability of three speaker verification systems under those attacks. We then introduce a number of countermeasures to prevent spoofing attacks from both known and unknown attackers. Known attackers are spoofing systems whose output was used to train the countermeasures, while an unknown attacker is a spoofing system whose output was not available to the countermeasures during training. Finally, we benchmark automatic systems against human performance on both speaker verification and spoofing detection tasks.ArticlePublication Metadata only Aperture averaging in multiple-input single-output free-space optical systems(SPIE, 2015-06) Gökçe, M. C.; Baykal, Y.; Kamacıoğlu, C.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratMultiple-input single-output systems are employed in free-space optical links to mitigate the degrading effects of atmospheric turbulence. We formulate the power scintillation as a function of transmitter and receiver coordinates in the presence of weak atmospheric turbulence by using the extended Huygens–Fresnel principle. Then the effect of the receiver–aperture averaging is quantified. To get consistent results, parameters are chosen within the range of validity of the wave structure functions. Radial array beams and a Gaussian weighting aperture function are used at the transmitter and the receiver, respectively. It is observed that the power scintillation decreases when the source size, the ring radius, the receiver–aperture radius, and the number of array beamlet increase. However, increasing the number of array beamlets to more than three seems to have negligible effect on the power scintillation. It is further observed that the aperture averaging effect is stronger when radial array beams are employed instead of a single Gaussian beam.ArticlePublication Metadata only Aperture averaging in multiple-input single-output free-space optical systems using partially coherent radial array beams(The Optical Society, 2016-06) Gökçe, M. C.; Baykal, Y.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, MuratMultiple-input single-output (MISO) techniques are employed in free-space optical (FSO) links to mitigate the degrading effects of atmospheric turbulence. In this paper, for the MISO FSO system, a partially coherent radial array and a finite-sized receiver aperture are used at the transmitter and the receiver, respectively. Using the extended Huygens–Fresnel principle, we formulate the average power and the power correlation at the finite-sized slow detector in weak atmospheric turbulence. System performance indicators such as the power scintillation index and the aperture averaging factor are determined. Effects of the source size, ring radius, receiver aperture radius, link distance, and structure constant and the degree of source coherence are analyzed on the performance of the MISO FSO system. In the limiting cases, the numerical results are found to be the same when compared to the existing coherent and partially coherent Gaussian beam scintillation indices.ArticlePublication Metadata only Application of sequence-dependent traveling salesman problem in printed circuit board assembly(IEEE, 2013-06) Alkaya, A. F.; Duman, Ekrem; Industrial Engineering; DUMAN, EkremOptimization issues regarding the automated assembly of printed circuit boards attracted the interest of researchers for several decades. This is because even small gains in assembly time result in very important benefits in mass production. In this paper, the focus is on a particular placement machine type that has a rotational turret and a stationary component magazine. So far, this type of machine received little attention among the researchers. In this paper, the feeder configuration, placement sequencing, and assembly time minimization problems are formulated explicitly and completely (without simplifying assumptions) using nonlinear integer programming. In addition, the placement sequencing problem is shown to be a recently introduced new generalization of the traveling salesman problem (the sequence-dependent traveling salesman). These formulations show the complexity of the problems and the need for effective heuristic designs for solving them. We propose three heuristics that improve previously suggested solution methods and give comparable results when compared to simulated annealing that is a widely accepted good performing metaheuristic on combinatorial optimization problems. The heuristics are experimentally shown to improve previous methods significantly in assembly time that implies a huge economic benefit. The heuristics proposed could also be applied to other placement machines with similar operation principles.