Browsing by Author "Rundensteiner, E."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Conference paperPublication Metadata only E-Cube: multi-dimensional event sequence analysis using hierarchical pattern query sharing(ACM, 2011-06-12) Liu, M.; Rundensteiner, E.; Greenfield, K.; Gupta, C.; Wang, S.; Arı, İsmail; Mehta, A.; Computer Science; ARI, IsmailMany modern applications, including online financial feeds, tag-based mass transit systems and RFID-based supply chain management systems transmit real-time data streams. There is a need for event stream processing technology to analyze this vast amount of sequential data to enable online operational decision making. Existing techniques such as traditional online analytical processing (OLAP) systems are not designed for real-time pattern-based operations, while state-of-the-art Complex Event Processing (CEP) systems designed for sequence detection do not support OLAP operations. We propose a novel E-Cube model which combines CEP and OLAP techniques for efficient multi-dimensional event pattern analysis at different abstraction levels. Our analysis of the interrelationships in both concept abstraction and pattern refinement among queries facilitates the composition of these queries into an integrated E-Cube hierarchy. Based on this E-Cube hierarchy, strategies of drill-down (refinement from abstract to more specific patterns) and of roll-up (generalization from specific to more abstract patterns) are developed for the efficient workload evaluation. Our proposed execution strategies reuse intermediate results along both the concept and the pattern refinement relationships between queries. Based on this foundation, we design a cost-driven adaptive optimizer called Chase, that exploits the above reuse strategies for optimal E-Cube hierarchy execution. Our experimental studies comparing alternate strategies on a real world financial data stream under different workload conditions demonstrate the superiority of the Chase method. In particular, our Chase execution in many cases performs ten fold faster than the state-of-the art strategy for real stock market query workloads.EditorialPublication Metadata only Foreword(2012) Rundensteiner, E.; Manolescu, I.; Amer-Yahia, S.; Naumann, F.; Markl, V.; Arı, İsmail; Computer Science; ARI, IsmailConference paperPublication Metadata only High-performance nested CEP query processing over event streams(IEEE, 2011) Liu, M.; Rundensteiner, E.; Dougherty, D.; Gupta, C.; Wang, S.; Arı, İsmail; Mehta, A.; Computer Science; ARI, IsmailComplex event processing (CEP) over event streams has become increasingly important for real-time applications ranging from health care, supply chain management to business intelligence. These monitoring applications submit complex queries to track sequences of events that match a given pattern. As these systems mature the need for increasingly complex nested sequence query support arises, while the state-of-art CEP systems mostly support the execution of flat sequence queries only. To assure real-time responsiveness and scalability for pattern detection even on huge volume high-speed streams, efficient processing techniques must be designed. In this paper, we first analyze the prevailing nested pattern query processing strategy and identify several serious shortcomings. Not only are substantial subsequences first constructed just to be subsequently discarded, but also opportunities for shared execution of nested subexpressions are overlooked. As foundation, we introduce NEEL, a CEP query language for expressing nested CEP pattern queries composed of sequence, negation, AND and OR operators. To overcome deficiencies, we design rewriting rules for pushing negation into inner subexpressions. Next, we devise a normalization procedure that employs these rules for flattening a nested complex event expression. To conserve CPU and memory consumption, we propose several strategies for efficient shared processing of groups of normalized NEEL subexpressions. These strategies include prefix caching, suffix clustering and customized “bit-marking” execution strategies. We design an optimizer to partition the set of all CEP subexpressions in a NEEL normal form into groups, each of which can then be mapped to one of our shared execution operators. Lastly, we evaluate our technologies by conducting a performance study to assess the CPU processing time using real-world stock trades data. Our results confirm that our NEEL execution in many cases performs 100 fold fast er than the traditional iterative nested execution strategy for real stock market query workloads.Conference paperPublication Metadata only Optimizing complex sequence pattern extraction using caching(IEEE, 2011) Ray, M.; Lui, M.; Rundensteiner, E.; Dougherty, D. J.; Gupta, C.; Wang, S.; Mehta, A.; Arı, İsmail; Computer Science; ARI, IsmailComplex Event Processing (CEP) has become increasingly important for tracking and monitoring complex event anomalies and trends in event streams emitted from business processes such as supply chain management to online stores in e-commerce. These monitoring applications submit complex event queries to track sequences of events that match a given pattern. The state-of-the-art CEP systems mostly focus on the execution of flat sequence queries, we instead support the execution of nested CEP queries specified by our NEsted Event Language NEEL. However, the iterative execution of nested CEP expressions often results in the repeated recomputation of the same or similar results for nested subexpressions as the window slides over the event stream. In this work we thus propose to optimize NEEL execution performance by caching intermediate results. In particular we design two methods of applying selective caching of intermediate results namely Object Caching and the Interval-Driven Semantic Caching. Techniques for incrementally loading, purging and exploiting the cache content are described. Our experimental study using real-world stock trades evaluates the performance of our proposed caching strategies for different query types.Conference paperPublication Metadata only Realtime healthcare services via nested complex event processing technology(The ACM Digital Library, 2012) Liu, M.; Ray, M.; Zhang, D.; Rundensteiner, E.; Dougherty, D. J.; Gupta, C.; Wang, S.; Arı, İsmail; Computer Science; ARI, IsmailComplex Event Processing (CEP) over event streams has become increasingly important for real-time applications ranging from healthcare to supply chain management. In such applications, arbitrarily complex sequence patterns as well as non existence of such complex situations must be detected in real time. To assure real-time responsiveness for detection of such complex pattern over high volume high-speed streams, efficient processing techniques must be designed. Unfortunately the efficient processing of complex sequence queries with negations remains a largely open problem to date. To tackle this shortcoming, we designed optimized strategies for handling nested CEP query. In this demonstration, we propose to showcase these techniques for processing and optimizing nested pattern queries on streams. In particular our demonstration showcases a platform for specifying complex nested queries, and selecting one of the alternative optimized techniques including sub-expression sharing and intermediate result caching to process them. We demonstrate the efficiency of our optimized strategies by graphically comparing the execution time of the optimized solution against that of the default processing strategy of nested CEP queries. We also demonstrate the usage of the proposed technology in several healthcare services.