Browsing by Author "Restrepo, D."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Metadata only A computational workflow for rupture‐to‐structural‐response simulation and its application to Istanbul(Wiley, 2020-10) Zhang, W. Y.; Restrepo, D.; Crempien, J. G. F.; Erkmen, Bülent; Taborda, R.; Kurtuluş, Aslı; Taciroglu, E.; Civil Engineering; ERKMEN, Bülent; KURTULUŞ, AsliScenario-based earthquake simulations at regional scales hold the promise in advancing the state-of-the-art in seismic risk assessment studies. In this study, a computational workflow is presented that combines (i) a broadband Green's function-based fault-rupture and ground motion simulation-herein carried out using the "UCSB (University of California at Santa Barbara) method", (ii) a three-dimensional physics-based regional-scale wave propagation simulation that is resolved at fmax=11.2 Hz, and (iii) a local soil-foundation-structure finite element analysis model. These models are interfaced with each other using the domain reduction method. The innermost local model-implemented in ABAQUS-is additionally enveloped with perfectly matched layer boundaries that absorb outbound waves scattered by the structures contained within it. The intermediate wave propagation simulation is carried out using Hercules, which is an explicit time-stepping finite element code that is developed and licensed by the CMU-QUAKE group. The devised workflow is applied to a 80x40x40 km3 region on the European side of Istanbul, which was modeled using detailed soil stratigraphy data and realistic fault rupture properties, which are available from prior microzonation surveys and earthquake scenario studies. The innermost local model comprises a chevron-braced steel frame building supported by a shallow foundation slab, which, in turn, rests atop a three-dimensional soil domain. To demonstrate the utility of the workflow, results obtained using various simplified soil-structure interaction analysis techniques are compared with those from the detailed direct model. While the aforementioned demonstration has a limited scope, the devised workflow can be used in a multitude of ways, for example, to examine the effects of shallow-layer soil nonlinearities and surface topography, to devise site- and structure-specific seismic fragilities, and for calibrating regional loss models, to name a few.Conference paperPublication Metadata only An investigation of the effects of surface topography on the seismic structural demands for a region of istanbul(CRC Press, 2019) Zhang, W.; Taciroglu, E.; Restrepo, D.; Taborda, R.; Kurtuluş, Aslı; Ansal, Mustafa Atilla; Civil Engineering; Silvestri, F.; Moraci, N.; KURTULUŞ, Asli; ANSAL, Mustafa AtillaIn this study, we provide preliminary results from an ongoing study—funded by The Scientific and Technological Research Council of Turkey, TUBITAK—investigating the effects of site-specific surface topography and soil stratigraphy on dynamic soil-structure interaction (SSI) behavior of structures located within a region of Istanbul. To achieve this, nonlinear time-domain responses of various soil-foundation-structure systems subjected to strong remote earthquake excitations for various site conditions will be investigated. The goal is to transform SSI analyses to consider realistic site conditions. An important part of this effort involves the creation of a map of topography-induced SSI response amplification factors for the south European side of Istanbul by performing 3D simulations using real site topography and soil stratigraphy data, and realistic bedrock ground motions, which are available from previously completed earthquake scenario and seismic microzonation studies. This paper presents preliminary results of large-scale 3D simulations performed for the south European side of Istanbul.