Browsing by Author "Michalopoulos, D. S."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Metadata only Link allocation for multiuser systems with hybrid RF/FSO backhaul: Delay-limited and delay-tolerant designs(IEEE, 2016-05) Jamali, V.; Michalopoulos, D. S.; Uysal, Murat; Schober, R.; Electrical & Electronics Engineering; UYSAL, MuratIn this paper, we consider a cascaded radio frequency (RF) and hybrid RF/free space optical (FSO) system where several mobile users transmit their data over an RF link to a decode-and-forward relay node (e.g., a small cell base station) and the relay forwards the information to a destination (e.g., a macro-cell base station) over a hybrid RF/FSO backhaul link. The relay and the destination employ multiple antennas for transmission and reception over the RF links while each mobile user has a single antenna. The RF links are orthogonal to the FSO link but half-duplex with respect to each other, i.e., either the user-relay RF link or the relay-destination RF link is active. For this communication setup, we derive the optimal fixed and adaptive link allocation policies for sharing the transmission time between the RF links based on the statistical and instantaneous channel state information (CSI) of the RF and FSO links, respectively. Thereby, we consider the following two scenarios depending on the delay requirements: 1) delay-limited transmission where the relay has to immediately forward the packets received from the users to the destination, and 2) delay-tolerant transmission where the relay is allowed to store the packets received from the users in its buffer and forward them to the destination when the quality of the relay-destination RF link is favorable. Our numerical results illustrate the effectiveness of the proposed communication architecture and link allocation policies, and their superiority compared to existing schemes, which employ only one type of backhaul link.Conference paperPublication Metadata only Mixed RF and hybrid RF/FSO relaying(IEEE, 2015) Jamali, V.; Michalopoulos, D. S.; Uysal, Murat; Schober, R.; Electrical & Electronics Engineering; UYSAL, MuratIn this paper, we consider a mixed RF and hybrid RF/FSO system where several mobile users transmit their data over an RF link to a relay node (e.g. a small cell base station) and the relay forwards the information to a destination (e.g. a macro cell base station) over a hybrid RF/FSO backhaul link. The relay and the destination employ multiple antennas for transmission and reception over the RF links while each mobile user has a single antenna. The RF links are orthogonal with respect to the FSO link and half-duplex with respect to each other, i.e., either the user-relay RF link or the relay-destination RF link is active. For this communication setup, we derive the optimal policy for sharing the RF transmission time between the RF links. Our numerical results show the effectiveness of the proposed communication architecture and link allocation policy, and their superiority compared to existing schemes which employ only one type of backhaul link.Conference paperPublication Metadata only Outage analysis of q-duplex RF/FSO relaying(IEEE, 2015) Jamali, V.; Michalopoulos, D. S.; Uysal, Murat; Schober, R.; Electrical & Electronics Engineering; UYSAL, MuratIn this paper, we propose and analyze a novel q-duplex radio frequency/free space optical (RF/FSO) relaying protocol for a mixed RF and hybrid RF/FSO communication system. In our scheme, several mobile users transmit their data over an RF link to a relay node (e.g. a small cell base station) and the relay forwards the information to a destination (e.g. a macro cell base station) over a hybrid RF/FSO backhaul link. The RF links are full-duplex with respect to the FSO link and half-duplex with respect to each other, i.e., either the user-relay RF link or the relay-destination RF link is active. Depending on the channel statistics, the q-duplex relaying protocol may reduce to full-duplex relaying, when the quality of the FSO link is sufficiently high, or to half-duplex relaying, when the FSO link becomes unavailable due to severe atmospheric conditions. We derive an analytical expression for the end-to-end outage probability of the proposed protocol when the fading for the user-relay RF link, the relay-destination RF link, and the relay-destination FSO link are modelled as Rayleigh, Ricean, and Gamma-Gamma distributed, respectively. Our simulation results confirm the analytical derivations and reveal the effectiveness of the proposed q-duplex protocol and its superiority compared to existing schemes.