Browsing by Author "Ghorbani, M."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Metadata only Deagglomeration of nanoparticle clusters in a “cavitation on chip” device(American Institute of Physics Inc., 2020-11-01) Gevari, M. T.; Niazi, S.; Karimzadehkhouei, M.; Sendur, K.; Mengüç, Mustafa Pınar; Ghorbani, M.; Kosar, A.; Mechanical Engineering; MENGÜÇ, Mustafa PınarDue to the potential of significant energy release in cavitating flows, early cavitation inception and intensification of cavitating flows are of great importance. To use this potential, we investigated the deagglomeration of nanoparticle clusters with the implementation of hydrodynamic cavitation in a microfluidic device. For this purpose, a microfluidic device with a micro-orifice geometry was designed and fabricated using standard microfabrication processes. The system was tested with distilled water in the assembled experimental setup. The flow patterns were characterized using the cavitation number and inlet pressure. Titania nanoparticles were utilized to prepare nanoparticle suspensions. The suspensions were heated to allow agglomeration of nanoparticles. The system was operated with the new working fluid (nanoparticle clusters) at different inlet pressures. After characterizing flow patterns, the flow patterns were compared with those of pure water. The deagglomeration effects of hydrodynamic cavitation on nanoparticle clusters showed the possibility to apply this method for the stabilization of nanoparticles, which paves way to the implementation of nanoparticle suspensions to thermal fluid systems for increased energy efficiency as well as to drug delivery. Our results also indicate that the presence of nanoparticles in the working fluid enhanced cavitation intensity due to the increase in the number of heterogeneous nucleation sites.ArticlePublication Metadata only Increasing the stability of nanofluids with cavitating flows in micro orifices(AIP, 2016) Karimzadehkhouei, M.; Ghorbani, M.; Sezen, M.; Sendur, K.; Mengüç, Mustafa Pınar; Leblebici, Y.; Kosar, A.; Mechanical Engineering; MENGÜÇ, Mustafa PınarOne of the most critical challenges for nanofluids in practical applications is related to their stability and reusability since a gradual agglomeration of nanoparticles in nanofluids occurs with time and is accelerated by heating. In this study, we propose a technique to maintain the performance and stability of nanofluids with the use of cavitating flows through micro orifices to prevent agglomeration and sedimentation of nanoparticles, which will increase the durability of the nanofluids. γ-Al2O3 (gamma-alumina) nanoparticles with a mean diameter of 20 nm suspended in water were utilized. In the current approach, a flow restrictive element induces sudden pressure, which leads to cavitation bubbles downstream from the orifice. The emerging bubbles interact with the agglomerated structure of nanoparticles and decrease its size through hitting or shock waves generated by their collapse, thereby increasing the stability and reusability of nanofluids. The method does not involve any use of expensive surfactants or surface modifiers, which might alter the thermophysical properties of nanofluids, may adversely influence their performance and biocompatibility, and may limit their effectiveness.