Browsing by Author "Eldeeb, H. B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
ArticlePublication Open Access Comparative characterization of indoor VLC and MMW communications via ray tracing simulations(IEEE, 2023) Hosseinabadi, Fahimeh Aghaei; Eldeeb, H. B.; Bariah, L.; Muhaidat, S.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Hosseinabadi, Fahimeh AghaeiThe demand for ultra-high-speed indoor wireless connectivity is ever-increasing, which poses unique challenges for the next generation wireless communication system design. This has prompted the exploration of higher frequency bands including millimeter wave (MMW) and visible light bands in addition to the conventional sub-6 GHz band. This paper provides a comprehensive comparison of the propagation channels of these frequency bands under the same indoor environment and scenarios. We adopt ray tracing techniques for site-specific channel modeling, which enables the consideration of the three-dimensional models of the indoor environment and objects inside. It allows us to take into account different frequencies, i.e., 2.4 GHz, 6 GHz, 28 GHz, 60 GHz, 100 GHz, and visible light band as well as different transmitter types, i.e., omnidirectional/directional antennas for radio frequency systems and indoor luminaries for visible light communications (VLC). For different frequencies under consideration, we obtain channel impulse responses (CIRs) and present the channel path losses for various user trajectories in indoor environments. Furthermore, we propose closed-form expressions for the cumulative distribution functions (CDFs) of received power levels for all frequency bands under consideration. Our results demonstrate that VLC channels exhibit lower path loss than that in MMW bands but higher than that of 2.4 GHz band. In addition, it is observed that VLC systems exhibit more sensitivity to shadowing and blockage effects. Our findings further indicate that the characteristics of the propagation channel are greatly influenced by the antenna type. For instance, using omnidirectional and rectangular patch antennas results in lower path loss compared to horn antennas, and this difference becomes more significant as the transmission distance decreases.ArticlePublication Metadata only A comparative evaluation of propagation characteristics of vehicular VLC and MMW channels(IEEE, 2023) Hosseinabadi, Fahimeh Aghaei; Eldeeb, H. B.; Uysal, Murat; Electrical & Electronics Engineering; UYSAL, Murat; Hosseinabadi, Fahimeh AghaeiVehicle-to-vehicle (V2V) communication is an underlying key technology to realize future intelligent transportation systems. Both millimeter wave (MMW) communication and visible light communication (VLC) are strong candidates to address V2V connectivity. Most of the earlier literature focuses on an individual technology. In an effort to better highlight the differences and relative advantages of these two competing technologies, we provide a comprehensive one-to-one comparison between vehicular VLC and MMW channels in this paper. For this purpose, we utilize ray tracing simulations which enable the consideration of three-dimensional modeling of the propagation environment and allow the study of various system parameters and road conditions in both line-of-sight and non-line-of-sight conditions. Under the same settings, we present the received signal strengths for both systems and investigate the channel characteristics for communication between two vehicles in the same lane as well as in different lanes with a lateral shift. We also analyze the impact of low, medium, and high density of neighbor vehicles as well as partial and complete blockage.