Browsing by Author "Chen, P. Y."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Metadata only Influence of accelerometer type on uncertainties in recorded ground motions and seismic damage assessment(Springer, 2022-07) Liao, W.; Fei, Y.; Ghahari, F.; Zhang, W.; Chen, P. Y.; Kurtuluş, Aslı; Yen, C. H.; Cheng, Q.; Lu, X.; Taciroglu, E.; Civil Engineering; KURTULUŞ, AsliStrong motion data recorded by strong-motion networks are essential for preventing and mitigating earthquake disasters, such as earthquake early warning and earthquake emergency responses, and the type of accelerometer can significantly influence the quality of recorded ground motions (GMs) and the subsequent usage. Different types of accelerometers vary significantly in both the price and the quality of collected data, because cheap accelerometers generate non-negligible self-noise and reduce the quality of the collected GMs. However, the effects of the accelerometer type and spatial density on the accuracy of GM-based seismic damage assessment are still unknown. The present study attempts to quantify these effects comprehensively at a regional scale. First, a method to simulate recorded data from different quality sensors is devised, using characteristics of existing low-, medium-, and high-quality accelerometers. These simulations use input data from either the Pacific Earthquake Engineering GM database or from a high-fidelity fault rupture and regional wave propagation simulation. Subsequently, the simulated sensor data are used to assess the seismic damage to typical buildings at a city scale. The results indicate that low-quality sensors found in most smartphones are currently insufficient for assessing seismic damage. Medium-quality accelerometers (MEMS-based instruments), on the other hand, can provide feasible solutions for cost-effective city-scale deployment and may offer deployment options that are superior to sensor networks with high-quality accelerometers.ArticlePublication Metadata only Influence of sensor density on seismic damage assessment: A case study for istanbul(Seismological Society of America, 2022-08) Cheng, Q.; Fei, Y.; Lu, X.; Liao, W.; Zhang, W.; Chen, P. Y.; Kurtuluş, Aslı; Ghahari, F.; Vela, V.; Taciroglu, E.; Civil Engineering; KURTULUŞ, AsliThe strong ground motions (GMs) recorded by strong motion networks are significant to increase the accuracy of seismic damage assessment. However, the influence of sensor density on seismic damage assessment remains unclarified. Therefore, a workflow is proposed in this study to quantitatively analyze the influence of sensor density on seismic damage assessment. The scenario-based earthquake simulation method is first used to provide the time history of GM at each location as the ground truth of the analysis. Subsequently, a GM prediction method, namely the interpolation method, is adopted to predict GMs at locations without sensors using measuring data from the limited sensors. Finally, the building scale and region scale seismic damage under different sensor densities are compared to quantitatively analyze the influence of sensor density on seismic damage assessment. A detailed case study for Zeytinburnu District, Istanbul, Turkey, is performed to demonstrate the proposed methods. The findings of this study can provide an important reference for seismic damage assessment and the deployment of strong motion networks.ArticlePublication Metadata only Regional-scale seismic fragility, loss, and resilience assessment using physics-based simulated ground motions: An application to istanbul(Wiley, 2023-05) Zhang, W.; Chen, P. Y.; Crempien, J. G. F.; Kurtuluş, Aslı; Arduino, P.; Taciroglu, E.; Civil Engineering; KURTULUŞ, AsliUsing results from 57 large-scale physics-based fault-rupture and wave propagation simulations, this research aims to evaluate the seismic risk, loss, and resilience of more than 16,000 reinforced concrete buildings in the Zeytinburnu district of Istanbul, Turkey. For each building and under each earthquake scenario, the spatially varying site-specific simulated ground motions were used for performing three-dimensional nonlinear time-history analyses. The resulting structural responses—such as peak story drift ratios (PSDR) and peak floor accelerations (PFAs)—were utilized to conduct three region-scale tasks: (i) building- and site-specific seismic fragility analysis for both structural and nonstructural components of each building; (ii) intensity-based seismic loss assessment using the FEMA P58 methodology and Monte Carlo simulations; and (iii) resilience evaluation based on the expected time of recovery predicted through FEMA P58. Moreover, both inertial and kinematic soil–structure interaction (SSI) effects were considered using a substructuring method for all three tasks. Site-specific soil properties were utilized to compute the coefficients of soil springs and dashpots, as well as the foundation input motions. The SSI effects were investigated by comparing the fragility, loss, and resilience indices obtained with and without considering SSI.