Browsing by Author "Chandrasekara, R."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Open Access Entanglement demonstration on board a nano-satellite(The Optical Society, 2020-07-20) Villar, A.; Lohrmann, A.; Bai, X.; Vergoossen, T.; Bedington, R.; Perumangatt, C.; Lim, H. Y.; Islam, T.; Reezwana, A.; Tang, Z.; Chandrasekara, R.; Sachidananda, S.; Durak, Kadir; Wildfeuer, C. F.; Griffin, D.; Oi, D. K. L.; Ling, A.; Electrical & Electronics Engineering; DURAK, KadirGlobal quantum networks for secure communication can be realized using large fleets of satellites distributing entangled photon pairs between ground-based nodes. Because the cost of a satellite depends on its size, the smallest satellites will be most cost-effective. This Letter describes a miniaturized, polarization entangled, photon-pair source operating on board a nano-satellite. The source violates Bell's inequality with a Clauser-Horne-Shimony-Holt parameter of 2.60 +/- 0.06. This source can be combined with optical link technologies to enable future quantum communication nano-satellite missions.Conference ObjectPublication Metadata only Entanglement demonstration on board a nano-satellite(Optica Publishing Group, 2020) Villar, A.; Lohrmann, A.; Bai, X.; Vergoosen, T.; Bedington, R.; Perumangatt, C.; Lim, H. Y.; Islam, T.; Reezwana, A.; Tang, Z.; Chandrasekara, R.; Sachidananda, S.; Durak, Kadir; Wildfeuer, C. F.; Griffin, D.; Oi, D. K. L.; Ling, A.; Electrical & Electronics Engineering; DURAK, KadirPolarization entangled photon-pairs are generated and detected onboard a 3U CubeSat in low-Earth orbit that violate Bell’s inequality with a CHSH parameter of 2.60 ± 0.06. These results pave the way for space-based quantum networks.ArticlePublication Metadata only Tracking capacitance of liquid crystal devices to improve polarization rotation accuracy(Optical Society of America, 2017-08-21) Chandrasekara, R.; Durak, Kadir; Ling, A.; Electrical & Electronics Engineering; DURAK, KadirWe report a capacitance tracking method for achieving arbitrary polarization rotation from nematic liquid crystals. By locking to the unique capacitance associated with the molecular orientation, any polarization rotation can be achieved with improved accuracy over a wide temperature range. A modified relaxation oscillator circuit that can simultaneously determine the capacitance and drive the rotator is presented.