Industrial Engineering
Permanent URI for this collectionhttps://hdl.handle.net/10679/9127
Browse
Browsing by Author "Demirel, Kenan Cem"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference paperPublication Metadata only Ensemble Learning based on Regressor Chains: A Case on Quality Prediction(SciTePress, 2019) Demirel, Kenan Cem; Şahin, Ahmet; Albey, Erinç; Industrial Engineering; ALBEY, Erinç; Demirel, Kenan Cem; Şahin, AhmetIn this study we construct a prediction model, which utilizes the production process parameters acquired from a textile machine and predicts the quality characteristics of the final yarn. Several machine learning algorithms (decision tree, multivariate adaptive regression splines and random forest) are used for prediction. An ensemble method, using the idea of regressor chains, is developed to further improve the prediction performance. Collected data is first segmented into two parts (labeled as “normal” and “unusual”) using local outlier factor method, and performance of the algorithms are tested for each segment separately. It is seen that ensemble idea proves its competence especially for the cases where the collected data is categorized as unusual. In such cases ensemble algorithm improves the prediction accuracy significantly. Copyright © 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedConference paperPublication Metadata only International roaming traffic optimization with call quality(SciTePress, 2019) Şahin, Ahmet; Demirel, Kenan Cem; Albey, Erinç; Gürsun, Gonca; Industrial Engineering; ALBEY, Erinç; Şahin, Ahmet; Demirel, Kenan Cem; Gürsun, GoncaIn this study we focus on a Steering International Roaming Traffic (SIRT) problem with single service that concerns a telecommunication’s operators’ agreements with other operators in order to enable subscribers access services, without interruption, when they are out of operators’ coverage area. In these agreements, a subscriber’s call from abroad is steered to partner operator. The decision for which each call will be forwarded to the partner is based on the user’s location (country/city), price of the partner operator for that location and the service quality of partner operator. We develop an optimization model that considers agreement constraints and quality requirements while satisfying subscribers demand over a predetermined time interval. We test the performance of the proposed approach using different execution policies such as running the model once and fixing the roaming decisions over the planning interval or dynamically updating the decisions using a rolling horizon approach. We present a rigorous trade off analysis that aims to help the decision maker in assessing the relative importance of cost, quality and ease of implementation. Our results show that steering cost is decreased by approximately 25% and operator mistakes are avoided with the developed optimization model while the quality of the steered calls is kept above the base quality level.