Graduate School of Engineering and Science
Permanent URI for this communityhttps://hdl.handle.net/10679/8952
Browse
Browsing by Author "Aydoğan, Reyhan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference ObjectPublication Metadata only Feature extraction for enhancing data-driven urban building energy models(European Council on Computing in Construction (EC3), 2023) Bolluk, Muhammed Said; Seyis, Senem; Aydoğan, Reyhan; Computer Science; Civil Engineering; KAZAZOĞLU, Senem Seyis; AYDOĞAN, Reyhan; Bolluk, Muhammed SaidBuilding energy demand assessment plays a crucial role in designing energy-efficient building stocks. However, most studies adopting a data-driven approach feel the deficiency of datasets with building-specific information in building energy consumption estimation. Hence, the research objective of this study is to extract new features within the climate, demographic, and building use type categories and increase the accuracy of a non-parametric regression model that estimates the energy consumption of a building stock in Seattle. The results show that adding new features to the original dataset from the building use type category increased the regression results with a 6.8% less error and a 30.8% higher R2 Score. Therefore, this study shows that building energy consumption estimation can be enhanced via new feature extraction equipped with domain knowledge.ArticlePublication Open Access Towards interactive explanation-based nutrition virtual coaching systems(Springer, 2024-01) Buzcu, Berk; Tessa, M.; Tchappi, I.; Najjar, A.; Hulstijn, J.; Calvaresi, D.; Aydoğan, Reyhan; Computer Science; AYDOĞAN, Reyhan; Buzcu, BerkThe awareness about healthy lifestyles is increasing, opening to personalized intelligent health coaching applications. A demand for more than mere suggestions and mechanistic interactions has driven attention to nutrition virtual coaching systems (NVC) as a bridge between human–machine interaction and recommender, informative, persuasive, and argumentation systems. NVC can rely on data-driven opaque mechanisms. Therefore, it is crucial to enable NVC to explain their doing (i.e., engaging the user in discussions (via arguments) about dietary solutions/alternatives). By doing so, transparency, user acceptance, and engagement are expected to be boosted. This study focuses on NVC agents generating personalized food recommendations based on user-specific factors such as allergies, eating habits, lifestyles, and ingredient preferences. In particular, we propose a user-agent negotiation process entailing run-time feedback mechanisms to react to both recommendations and related explanations. Lastly, the study presents the findings obtained by the experiments conducted with multi-background participants to evaluate the acceptability and effectiveness of the proposed system. The results indicate that most participants value the opportunity to provide feedback and receive explanations for recommendations. Additionally, the users are fond of receiving information tailored to their needs. Furthermore, our interactive recommendation system performed better than the corresponding traditional recommendation system in terms of effectiveness regarding the number of agreements and rounds.