Industrial Engineering
Permanent URI for this collectionhttps://hdl.handle.net/10679/45
Browse
Browsing by Author "Avishan, Farzad"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Metadata only Electric bus fleet scheduling under travel time and energy consumption uncertainty(Elsevier, 2023-11) Avishan, Farzad; Yanıkoğlu, İhsan; Alwesabi, Y.; Industrial Engineering; YANIKOĞLU, Ihsan; Avishan, FarzadThe public transportation system is experiencing a substantial shift due to the rapid expansion of electromobility infrastructure and operations. This transformation is anticipated to contribute to decarbonizing and promoting environmental sustainability significantly. Among the most pressing planning issues in this area is the optimization of operational and strategic costs associated with electric fleets, which has recently garnered the attention of researchers. This paper investigates the scheduling and procurement problem of electric fleets under travel time and energy consumption uncertainty. A novel mixed-integer linear programming model is proposed, which determines the number of buses required to cover all trips, yields the schedule of the trips, and creates bus charging plans. The robust optimization paradigm is employed to address uncertainty, and a new budget uncertainty set is introduced to control the robustness of the solution. The efficiency of the model is evaluated through an extensive Monte Carlo simulation. Additionally, a case study is conducted on the off-campus college transport network at Binghamton University to demonstrate the real-world applicability of the model. The numerical results have shown that ignoring uncertainty can lead to schedules where up to 48% of the trips are affected, which are either delayed or missed. The proposed approach can also be applied to other transportation networks with similar characteristics and uncertainties.ArticlePublication Metadata only Humanitarian relief distribution problem: an adjustable robust optimization approach(Informs, 2023-07) Avishan, Farzad; Elyasi, Milad; Yanıkoğlu, İhsan; Ekici, Ali; Özener, Okan Örsan; Industrial Engineering; AVISHAN, Farzad; YANIKOĞLU, Ihsan; EKİCİ, Ali; ÖZENER, Okan Örsan; Elyasi, MiladManagement of humanitarian logistics operations is one of the most critical planning problems to be addressed immediately after a disaster. The response phase covers the first 12 hours after the disaster and is prone to uncertainties because of debris and gridlock traffic influencing the dispatching operations of relief logistics teams in the areas affected. Moreover, the teams have limited time and resources, and they must provide equitable distribution of supplies to affected people. This paper proposes an adjustable robust optimization approach for the associated humanitarian logistics problem. The approach creates routes for relief logistics teams and decides the service times of the visited sites to distribute relief supplies by taking the uncertainty in travel times into account. The associated model allows relief logistics teams to adjust their service decisions according to the revealed information during the process. Hence, our solutions are robust for the worst-case realization of travel times, but still more flexible and less conservative than those of static robust optimization. We propose novel reformulation techniques to model these adjustable decisions. The resulting models are computationally challenging optimization problems to be solved by exact methods, and, hence, we propose heuristic algorithms. The state-of-the-art heuristic, which is based on clustering and a dedicated decision-rule algorithm, yields near-optimal results for medium-sized instances and is scalable even for large-sized instances. We have also shown the effectiveness of our approach in a case study using a data set obtained from an earthquake that hit the Van province of Turkey in 2011.ArticlePublication Metadata only Robust strategic planning of dynamic wireless charging infrastructure for electric buses(Elsevier, 2022-02-01) Alwesabi, Y.; Avishan, Farzad; Yanıkoğlu, İhsan; Liu, Z.; Wang, Y.; Industrial Engineering; AVISHAN, Farzad; YANIKOĞLU, IhsanElectromobility in public bus systems is growing rapidly and experiencing a fundamental transformation in their infrastructure and operations. The dilemma of limited driving range and charging time of battery electric buses (BEBs) hinders their adoption. A novel approach to address BEB limitations is to utilize dynamic wireless charging (DWC) technology that allows buses to charge while in motion. This paper aims to analyze robust strategic planning of DWC and BEB fleet scheduling based on a real bus network at Binghamton University. The problem is first formulated as a new deterministic mixed-integer linear programming model to simultaneously optimize both the charging planning problem and fleet scheduling problem in an integrated fashion. To address the uncertainty of energy demand and charging time, a robust counterpart model (RCM) has been derived. To increase RCM flexibility, the battery status variable is formulated in a cumulative form. Dependent and independent budget uncertainty sets have been developed to control the robustness. A sensitivity analysis has been conducted to study the system behavior in response to different charging types, auxiliary energy demand, depth of discharge, charging options at terminals, battery degradation, and electricity cost. The deterministic model shows that eight homogeneous BEBs are required to operate on the selected routes with a battery capacity of 54.01 kWh and a total cost of $3,636,347. The results show that joint planning of charging infrastructure and fleet scheduling can save 19.2% of total cost compared to disjoint planning. The RCM results in 10 BEBs to ensure feasiblility against uncertainty.