Research Centers
Permanent URI for this communityhttps://hdl.handle.net/10679/7142
Browse
Browsing by Author "Başol, Altuğ Melik"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference paperPublication Metadata only Investigation of soot formation of ethylene/air jet diffusion flame with rank correlated slw including ethylene and acetylene radiation(Begell House Inc., 2023) Halvaşi, Berkay; Başol, Altuğ Melik; Mengüç, Mustafa Pınar; Ertunç, Özgür; Mechanical Engineering; BAŞOL, Altuğ Melik; MENGÜÇ, Mustafa Pınar; ERTUNÇ, Özgür; Halvaşi, BerkayRadiation is significant, especially in sooting flames. The interaction between radiation and soot considerably affects the combustion regime. Spectral radiation models that account for the radiative effects of sooting flames are critical. This study numerically investigates the interaction between the radiation and soot formation on a sooting jet diffusion flame. A rank correlated spectral line-based weighted sum of gray gases (RC-SLW) global model is implemented in Ansys Fluent and used for the combustion modeling of a jet diffusion flame. RC-SLW model, including ethylene and acetylene radiation, shows considerable improvement in predicting soot volume fraction compared to the domain-based with single gray gas weighted sum of gray gases (WSGG) model in Ansys Fluent. Increasing the number of gray gases in the RC-SLW model from 5 to 22 reduces the error in the maximum soot volume fraction from 30% to 1%. It was found that the effect of ethylene and acetylene radiation in the RC-SLW model has a minor effect on soot formation. Simulations without the effect of ethylene and acetylene radiation in the RC-SLW model underpredict maximum soot volume fraction by 5%.Conference paperPublication Metadata only A Monte Carlo random walk-based methodology for calculation of sensitivity coefficients in inverse radiant boundary design problem(Begell House Inc., 2023) Yıldız, Ersin; Başol, Altuğ Melik; Mengüç, Mustafa Pınar; Mechanical Engineering; BAŞOL, Altuğ Melik; MENGÜÇ, Mustafa Pınar; Yıldız, ErsinThis study presents a methodology for the solution of inverse boundary design problems involving transient heat conduction in solid objects imposed by radiant boundary condition. The inverse solution aims to find the required time-varying radiant wall temperature that provides the desired temperature histories at several selected design points inside the solid objects. Gradient-based optimization approach is employed, and a novel methodology is developed for the calculation of the sensitivity coefficients. The sensitivity coefficients are compared with the reference solution obtained from finite difference approximation. First, the inverse boundary design methodology was tested on two scenarios with known radiant wall temperature profiles. Using the true solutions of the problems, the validity of the developed methodology was verified. Next, the methodology was tested on a case where a constant cooling rate at a single design point was set as objective function. Results show that the methodology can successfully determine the required radiant wall temperature profile that fulfills the desired cooling rate.