Civil Engineering
Permanent URI for this collectionhttps://hdl.handle.net/10679/312
Browse
Browsing by Author "Amiri, Ali"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
ArticlePublication Metadata only Crack remediation in mortar via biomineralization: effects of chemical admixtures on biogenic calcium carbonate(Elsevier, 2018-11-30) Amiri, Ali; Azima, Mahzad; Bundur, Zeynep Başaran; Civil Engineering; BUNDUR, Zeynep Başaran; Amiri, Ali; Azima, MahzadLimited research on biomineralization in cement-based systems suggested that self-healing of surface cracks could be obtained by triggering biogenic calcium carbonate (CaCO3) precipitation within the cracks. While this is encouraging, there is not enough information regarding the influence of admixtures on crack remediation and durability of the biogenic CaCO3 against weathering conditions. In this study, the microorganisms were introduced to mortar with their growth medium, which included corn steep liquor (CSL) and urea. With this approach, the cracks on mortar surface were sealed with the CaCO3 and the water absorption capacity of the so-called self-healed mortar decreased compared to its counterpart cracked mortar samples. The biogenic CaCO3 precipitate was found to be durable against freeze-thaw; however the precipitate was unstable under rain water and light. While the addition of air entraining agents (AEA) did not influence the self-healing ability of cells, use of superplasticizers improved the self-healing ability in terms of crack sealing, water absorption, and durability of the precipitate.ArticlePublication Metadata only Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability(Elsevier, 2017) Bundur, Zeynep Başaran; Amiri, Ali; Ersan, Y. C.; Boon, N.; Belie, N. de; Civil Engineering; BUNDUR, Zeynep Başaran; Amiri, AliThe applications of self-healing in cement-based materials via biomineralization processes are developing quickly. The main challenge is to find a microorganism that can tolerate the restricted environment of cement paste matrix (i.e. very high pH, lack of oxygen and nutrients, small pore size etc.). The focus of this work was to determine the possible use of an ammonium salt-based air-entraining admixture (AEA) as a protection method to improve the survival of incorporated Sporosarcina pasteurii cells in cement-based mortar. Bacterial cells were directly added to the mortar mix with and without nutrients. Nutrients should be provided to keep the microorganisms viable even at early ages (i.e. 7 days). Surface charge of the bacterial cells and in vitro biogenic calcium carbonate (CaCO3) precipitation were not affected by the incorporation of AEA. However, introducing AEA did not influence the viability in mortar samples, which might be attributed to the type and chemistry of AEA used.ArticlePublication Metadata only Use of corn-steep liquor as an alternative carbon source for biomineralization in cement-based materials and its impact on performance(Elsevier, 2018-03-20) Amiri, Ali; Bundur, Zeynep Başaran; Civil Engineering; BUNDUR, Zeynep Başaran; Amiri, AliEarly age microcracks are generally the primary cause for a decrease in service life of cement-based structures. Recent studies suggested that it might be possible to develop a smart cement-based material that could self-heal microcracks. The use of microbial induced calcium carbonate precipitation (MICP) in cement-based materials is a novel approach to trigger self-healing and it has become an interesting field of research. MICP is a biochemical process where calcium carbonate (CaCO3) precipitation is obtained via metabolic pathways for microorganism and MICP via urea hydrolysis is the most common approach used in cement-based materials. Through the literature the most commonly used nutrient media for urea hydrolysis was composed of yeast extract and urea. However, use of yeast extract as a carbon source not only resulted with a severe retardation of initial setting and it increases the cost of the application. This study investigates the suitability of corn steep liquor (CSL) as an alternative replacement of yeast extract. CSL was found to be a suitable alternative for MICP applications without compromising bacterial growth, ability to promote CaCO3 precipitation. In addition, use of a nutrient medium including CSL and urea did not have such an adverse effect on initial set and compressive strength as compared to a urea and yeast extract medium. (C) 2018 Elsevier Ltd. All rights reserved.