Show simple item record

dc.contributor.authorTumasyan, A.
dc.contributor.authorIşıldak, Bora
dc.date.accessioned2023-09-12T13:00:18Z
dc.date.available2023-09-12T13:00:18Z
dc.date.issued2022-03-10
dc.identifier.issn0370-2693en_US
dc.identifier.urihttp://hdl.handle.net/10679/8804
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S0370269322000223
dc.description.abstractA search for Wγ resonances in the mass range between 0.7 and 6.0 TeV is presented. The W boson is reconstructed via its hadronic decays, with the final-state products forming a single large-radius jet, owing to a high Lorentz boost of the W boson. The search is based on proton-proton collision data at s=13 TeV, corresponding to an integrated luminosity of 137 fb−1, collected with the CMS detector at the LHC in 2016–2018. The Wγ mass spectrum is parameterized with a smoothly falling background function and examined for the presence of resonance-like signals. No significant excess above the predicted background is observed. Model-specific upper limits at 95% confidence level on the product of the cross section and branching fraction to the Wγ channel are set. Limits for narrow resonances and for resonances with an intrinsic width equal to 5% of their mass, for spin-0 and spin-1 hypotheses, range between 0.17 fb at 6.0 TeV and 55 fb at 0.7 TeV. These are the most restrictive limits to date on the existence of such resonances over a large range of probed masses. In specific heavy scalar (vector) triplet benchmark models, narrow resonances with masses between 0.75 (1.15) and 1.40 (1.36) TeV are excluded for a range of model parameters. Model-independent limits on the product of the cross section, signal acceptance, and branching fraction to the Wγ channel are set for minimum Wγ mass thresholds between 1.5 and 8.0 TeV.en_US
dc.description.sponsorshipBMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); MINCIENCIAS (Colombia); MSES and CSF (Croatia); RIF (Cyprus); SENESCYT (Ecuador); MoER, ERC PUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFIA (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLPFAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoSTR(Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAKand TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract Nos. 675440, 724704, 752730, 765710 and 824093 (European Union); the Leventis Foundation; the Alfred P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a la Recherche dans l'Industrie et dans l'Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S. -FNRSand FWO (Belgium) under the "Excellence of Science -EOS" -be.h project n. 30820817; the Beijing Municipal Science & Technology Commission, No. Z191100007219010; The Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Deutsche Forschungsgemeinschaft (DFG), under Germany's Excellence Strategy -EXC 2121 "Quantum Universe" -390833306, and under project number 400140256 -GRK2497; the Lendulet ("Momentum") Program and the Janos Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIA research grants 123842, 123959, 124845, 124850, 125105, 128713, 128786, and 129058 (Hungary); the Council of Science and Industrial Research, India; the Latvian Council of Science; the Ministry of Science and Higher Education and the National Science Center, contracts Opus 2014/15/B/ST2/03998 and 2015/19/B/ST2/02861 (Poland); the National Priorities Research Program by Qatar National Research Fund; the Ministry of Science and Higher Education, project no. 0723-2020-0041 (Russia); the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia Maria de Maeztu, grant MDM-2015-0509 and the Programa Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF; the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chulalongkorn University and the Chulalongkorn Academic into Its 2nd Century Project Advancement Project (Thailand); the Kavli Foundation; the Nvidia Corporation; the SuperMicro Corporation; the Welch Foundation, contract C-1845; and the Weston Havens Foundation (USA). We also acknowledge the following institutions: Institut fur Hochenergiephysik, Wien; Inter University Institute For High Energies, Brussel; Universite Catholique de Louvain, Louvain-la-Neuve; Sao Paulo Research and Analysis Center, Sao Paulo; Universidade do Estado do Rio de Janeiro, Rio de Janeiro; Institute of High Energy Physics of the Chinese Academy of Sciences, Beijing; National Institute of Chemical Physics and Biophysics, Tallinn; Helsinki Institute of Physics, Helsinki; Institut de recherche sur les lois fondamentales de l'Univers, CEA, Universite ParisSaclay, Gif-sur-Yvette; Institut national de physique nucleaire et de physique des particules, IN2P3, Villeurbanne; Institut Pluridisciplinaire Hubert Curien (IPHC), Strasbourg; Laboratoire Leprince-Ringuet, CNRS/IN2P3, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau; Deutsches Elektronen-Synchrotron, Hamburg; Karlsruher Institut fur Technologie, Karlsruhe; RWTH Aachen University, Aachen; University of Ioannina, Ioannina; Wigner Research Centre for Physics, Budapest; Tata Institute of Fundamental Research, Mumbai; INFN CNAF, Bologna; INFN Sezione di Bari, Universita di Bari, Politecnico di Bari, Bari; INFN Sezione di Pisa, Universita di Pisa, Scuola Normale Superiore di Pisa, Pisa; INFN Sezione di Roma, Sapienza Universita di Roma, Rome; Laboratori Nazionali di Legnaro, Legnaro; Kyungpook National University, Daegu; National Centre for Physics, Quaid-i-Azam University, Islamabad; National Centre for Nuclear Research, Swierk; Laboratorio de Instrumentacao e Fisica Experimental de Particulas, Lisboa; Institute for High Energy Physics of National Research Centre `Kurchatov Institute', Protvino; Institute for Nuclear Research (INR) of the Russian Academy of Sciences, Troitsk; Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC `Kurchatov Institute', Moscow; Joint Institute for Nuclear Research, Dubna; Korea Institute of Science and Technology Information (KISTI), Daejeon; Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas(CIEMAT), Madrid; Instituto de Fisica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander; Port d'Informacio Cientifica, Bellaterra; CERN, European Organization for Nuclear Research, Geneva; CSCS -Swiss National Supercomputing Centre, Lugano; National Center for High-performance Computing (NCHC), Tainan City; Middle East Technical University, Physics Department, Ankara; National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov; GridPP, Brunel University, Uxbridge; GridPP, Imperial College London; GridPP, Queen Mary University of London, London; GridPP, Royal Holloway, University of London, London; GridPP, Rutherford Appleton Laboratory, Didcot; GridPP, University of Bristol, Bristol; GridPP, University of Glasgow, Glasgow; GridPP, University of Oxford, Oxford; California Institute of Technology, Pasadena; Fermi National Accelerator Laboratory, Batavia; Massachusetts Institute of Technology, Cambridge; National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility, Berkeley; Pittsburgh Supercomputing Center (PSC), Pittsburgh; Purdue University, West Lafayette; San Diego Supercomputer Center (SDSC), La Jolla; Texas Advanced Computing Center (TACC), Austin; University of California, San Diego, La Jolla; University of Colorado Boulder, Boulder; University of Florida, Gainesville; University of Nebraska-Lincoln, Lincoln; University of Wisconsin -Madison, Madison; Vanderbilt University, Nashville.
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofPhysics Letters B
dc.rightsAttribution 4.0 International*
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleSearch for Wγ resonances in proton-proton collisions at √s = 13 TeV using hadronic decays of Lorentz-boosted W bosonsen_US
dc.typeArticleen_US
dc.description.versionPublisher versionen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID(ORCID 0000-0002-0283-5234 & YÖK ID 124605) Işıldak, Bora
dc.contributor.ozuauthorIşıldak, Bora
dc.creatorThe CMS Collaboration
dc.identifier.volume826en_US
dc.identifier.wosWOS:000792884500019
dc.identifier.doi10.1016/j.physletb.2022.136888en_US
dc.subject.keywordsBSM particlesen_US
dc.subject.keywordsCMSen_US
dc.subject.keywordsWgamma resonancesen_US
dc.identifier.scopusSCOPUS:2-s2.0-85123911583
dc.relation.publicationcategoryArticle - International Refereed Journal - Institutional Academic Staff


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International

Share this page