Show simple item record

dc.contributor.authorBatyrov, Merdan
dc.contributor.authorDericiler, K.
dc.contributor.authorPalabıyık, Büşra Akkoca
dc.contributor.authorOkan, B. S.
dc.contributor.authorÖztürk, Hande
dc.contributor.authorFındıkçı, İlknur Eruçar
dc.date.accessioned2023-08-29T08:45:06Z
dc.date.available2023-08-29T08:45:06Z
dc.date.issued2023-06
dc.identifier.issn2352-4928en_US
dc.identifier.urihttp://hdl.handle.net/10679/8736
dc.identifier.urihttps://www.sciencedirect.com/science/article/pii/S2352492823003264
dc.description.abstractIn this work, we combined tensile test results with atomistic simulations to investigate the effect of filler parameters including distribution, stacking, loading and lateral graphene size on elastic moduli of graphene/PA-6,6 nanocomposites. Stacked and randomly distributed atomistic models were adapted in Molecular Dynamics (MD) simulations to establish the limits of stiffness enhancement in graphene reinforced PA-6,6 nanocomposites with loading ratios changing from 0 to 1 wt%. Experimental results showed that incorporating of 0.3–0.4 wt% graphene loading improved the elastic modulus of the neat polymer by 41.7%−43.5%. While the test sample behaved close to the computational results of the stacked atomistic model at low graphene loadings up to 0.4 wt%, it overshot the predictions of the randomly distributed model at all considered loadings up to 1 wt%. Elastic moduli of graphene-based PA-6,6 nanocomposites increased linearly with graphene loading in the stacked model, however, no such relation was detected in the randomly distributed model. The lower stiffness enhancement provided by the randomly distributed model compared to the stacked model was revealed as the small lateral size of graphene plates in PA-6,6 matrix. As the graphene size increased, the elastic modulus of the graphene dramatically increased, directly improving the elastic modulus of the nanocomposite. The developed computational approach is highly useful to estimate the boundaries of stiffness enhancement provided by graphene dispersions in macroscale nanocomposite samples.en_US
dc.description.sponsorshipHigh-Performance Computing Laboratory of Ozyegin University ; TÜBİTAK
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.ispartofMaterials Today Communications
dc.rightsrestrictedAccess
dc.titleCombining tensile test results with atomistic predictions of elastic modulus of graphene/polyamide-6,6 nanocompositesen_US
dc.typeArticleen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID(ORCID 0000-0002-1010-4001 & YÖK ID 295748) Öztürk, Hande
dc.contributor.authorID(ORCID 0000-0002-6059-6067 & YÖK ID 260094) Eruçar, İlknur
dc.contributor.ozuauthorÖztürk, Hande
dc.contributor.ozuauthorFındıkçı, İlknur Eruçar
dc.identifier.volume35en_US
dc.identifier.wosWOS:001009026400001
dc.identifier.doi10.1016/j.mtcomm.2023.105636en_US
dc.subject.keywords6en_US
dc.subject.keywordsElastic modulusen_US
dc.subject.keywordsGrapheneen_US
dc.subject.keywordsMD simulationen_US
dc.subject.keywordsPolyamide-6en_US
dc.subject.keywordsPolymer nanocompositeen_US
dc.identifier.scopusSCOPUS:2-s2.0-85148036123
dc.contributor.ozugradstudentBatyrov, Merdan
dc.contributor.ozugradstudentPalabıyık, Büşra Akkoca
dc.relation.publicationcategoryArticle - International Refereed Journal - Institutional Academic Staff, Graduate Student and PhD Student


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record


Share this page