Show simple item record

dc.contributor.authorEldeeb, Hossıen Badr
dc.contributor.authorSait, S. M.
dc.contributor.authorUysal, Murat
dc.date.accessioned2022-10-25T10:08:44Z
dc.date.available2022-10-25T10:08:44Z
dc.date.issued2021
dc.identifier.issn2169-3536en_US
dc.identifier.urihttp://hdl.handle.net/10679/7925
dc.identifier.urihttps://ieeexplore.ieee.org/document/9495818
dc.description.abstractVisible light communication (VLC) is based on the idea of modulating the light intensity of LEDs to transmit information and enables the dual use of exterior automotive and road side infrastructure lighting for both illumination and communication purposes. To position VLC as a strong candidate for vehicular connectivity, it is essential to realize multi-directional reception in various deployment scenarios supporting both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) links. In this paper, we investigate the performance of a vehicular VLC system in different road types (i.e., multi-lane, curved roads), intersections (i.e., T-shaped, Y-shaped intersections) and traffic scenarios (i.e., cruising in the same or different lanes, lane change etc.). We conduct a channel modeling study based on non-sequential ray tracing to quantify the capability of receiving signals in different cases. Our results reveal that deployment of nine photodetectors with carefully determined locations on the vehicle is enough to create the required quasi-omni-directional coverage for both V2V connectivity (in front and back directions) and I2V connectivity.en_US
dc.description.sponsorshipKing Fahd University of Petroleum and Minerals (KFUPM) ; TÜBİTAK ; European Union’s Horizon 2020
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/76446
dc.relationinfo:turkey/grantAgreement/TUBITAK/215E311
dc.relation.ispartofIEEE Access
dc.rightsAttribution 4.0 International*
dc.rightsopenAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.titleVisible light communication for connected vehicles: How to achieve the omnidirectional coverage?en_US
dc.typeArticleen_US
dc.description.versionPublisher versionen_US
dc.peerreviewedyesen_US
dc.publicationstatusPublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID(ORCID 0000-0001-5945-0813 & YÖK ID 124615) Uysal, Murat
dc.contributor.authorID(ORCID 0000-0001-7560-1124 & YÖK ID 285570) Eldeeb, Hossıen
dc.contributor.ozuauthorEldeeb, Hossıen Badr
dc.contributor.ozuauthorUysal, Murat
dc.identifier.volume9en_US
dc.identifier.startpage103885en_US
dc.identifier.endpage103905en_US
dc.identifier.wosWOS:000679526100001
dc.identifier.doi10.1109/ACCESS.2021.3099772en_US
dc.subject.keywordsConnected vehicleen_US
dc.subject.keywordsCurved roaden_US
dc.subject.keywordsIntersectionsen_US
dc.subject.keywordsMulti-lane roaden_US
dc.subject.keywordsOmni-directional coverageen_US
dc.subject.keywordsReceiver modelen_US
dc.subject.keywordsVehicular visible light communicationsen_US
dc.identifier.scopusSCOPUS:2-s2.0-85111982746
dc.relation.publicationcategoryArticle - International Refereed Journal - Institutional Academic Staff


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 4.0 International
Except where otherwise noted, this item's license is described as Attribution 4.0 International

Share this page