Show simple item record

dc.contributor.authorKurt, S.
dc.contributor.authorAtalay, Yiğit Alper
dc.contributor.authorAydın, Ozan Eray
dc.contributor.authorAvcıoğlu, B.
dc.contributor.authorYıldırım, T.
dc.contributor.authorGöktepe, G. B.
dc.contributor.authorEmir, S.
dc.contributor.authorBundur, Zeynep Başaran
dc.contributor.authorPaksoy, H. Ö.
dc.contributor.editorBos, F. P.
dc.contributor.editorLucas, S. S.
dc.contributor.editorWolfs, R. J. M.
dc.contributor.editorSalet, T. A. M.
dc.date.accessioned2021-10-07T11:16:43Z
dc.date.available2021-10-07T11:16:43Z
dc.date.issued2020
dc.identifier.issn2211-0844
dc.identifier.urihttp://hdl.handle.net/10679/7622
dc.identifier.urihttps://link.springer.com/chapter/10.1007%2F978-3-030-49916-7_7
dc.description.abstractAdditive manufacturing, i.e. three-dimensional (3D) printing technology has many advantages over traditional processes and the related technology is continuously improving. This study aims to develop an energy- efficient White Portland cement (WPC) mortar mix suitable for 3D printing applications. The mortar mix contained a blended binder content using Çimsa Recipro50 calcium aluminate cement (CAC) along with Çimsa Super WPC (sWPC). Microencapsulated Phase Change Materials (mPCMs) added to the mix enhance thermal performance through latent heat storage capability. The CAC used in the study has an alumina content of at least 50% Mineralogical analysis of the CAC and sWPC binder were characterized by the XRD-Rietveld method. In terms of material design for 3D printing, printable mortars must be workable enough to be extruded (extrudability) and retain its shape with little or no deformation after extrusion (buildability). In this study, the printability of mortar was evaluated through workability loss, open time, green strength, and early-age compressive strength. Results showed that use of sWCP and CAC composite enables a thixotropic behavior, which is required for 3D printing. The designed mortar mixes can enable high flowability necessary for successful extrusion and have high green strength at fresh state to maintain stable printing. The results also showed that the use of mPCMs can influence printability while improving buildability.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofSecond RILEM International Conference on Concrete and Digital Fabrication, Part of the RILEM Bookseries book series (RILEM)
dc.rightsrestrictedAccess
dc.titleDesign of energy-efficient white portland cement mortars for digital fabricationen_US
dc.typeBook chapteren_US
dc.publicationstatusPublisheden_US
dc.contributor.departmentÖzyeğin University
dc.contributor.authorID(ORCID 0000-0003-1398-4021 & YÖK ID 205281) Başaran, Zeynep
dc.contributor.ozuauthorBundur, Zeynep Başaran
dc.identifier.volume28
dc.identifier.startpage64en_US
dc.identifier.endpage72en_US
dc.identifier.doi10.1007/978-3-030-49916-7_7en_US
dc.subject.keywordsAdditive manufacturingen_US
dc.subject.keywordsCalcium aluminate cementsen_US
dc.subject.keywordsWhite Portland Cementen_US
dc.subject.keywordsMicroencapsulated Phase Change Materialsen_US
dc.subject.keywordsEnergy efficient mortaren_US
dc.identifier.scopusSCOPUS:2-s2.0-85088267195
dc.contributor.ozugradstudentAtalay, Yiğit Alper
dc.contributor.ozugradstudentAydın, Ozan Eray
dc.contributor.authorMale2
dc.contributor.authorFemale1
dc.relation.publicationcategoryBook Chapter - International - Institutional Academic Staff and Graduate Student


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record


Share this page