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1. Introduction

Chance constrained optimization is introduced
by [1] (also see, [2–4]) and it ensures that the
probability of satisfying an uncertain constraint is
greater than or equal to a certain threshold while
minimizing or maximizing a given objective func-
tion. A chance constraint is given by

Prζ∼P {ζ : f(x, ζ) ≤ 0} ≥ 1− ǫ, (1)

where f(x, ζ) denotes a function of a decision vec-
tor x ∈ X ⊆ R

n
(X is the set of feasible de-

cisions) and a vector of uncertainty parameters
ζ ∈ R

L, ǫ ∈ [0, 1] is the predetermined probability
threshold, and P is the known probability distri-
bution of ζ. It can be shown that the feasible set
of (1) is convex when ζ follows a Gaussian distri-
bution and f(x, ζ) is linear in x and ζ; see [5–7].
Additional convexity results for (1) can be shown
when f(x, ζ) is additively separable and ζ follows
a log-concave distribution ( [8, 9]). Even though
the chance constraint is tractable for the above

mentioned problem classes, it is generally compu-
tationally intractable because the feasible set of
the chance constraint is non-convex or it is com-
putationally intractable to compute the left-hand
side (LHS) of the constraint even when the fea-
sible set is convex. In the latter case, one may
use a Monte Carlo simulation to check the feasi-
bility of the chance constraint, nevertheless, the
simulation approach can also be too costly at high
accuracies.
The chance constraint approach can be extended
to multiple constraints, i.e., referred to as the joint
chance constraint:

Prζ∼P {ζ : fk(x, ζ) ≤ 0 ∀k ∈ K} ≥ 1− ǫ. (2)

Notice that (2) is at least as computationally chal-
lenging as (1).
Computationally tractable safe approximations of
the chance constraint have been proposed to over-
come the difficulties that are mentioned above. A
safe approximation method replaces the chance
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constraint with a set of constraints that yields a
solution set that is a subset of the feasible set of
the chance constraint. Nemirovski and Shapiro
[10] propose a computationally tractable approx-
imation of a chance constrained problem where
constraints are affine in the uncertainty parame-
ters that are independent with known support.
Ben-Tal and Nemirovski [11] translate the ex-
isting stochastic uncertainties to ‘uncertain-but-
bounded’ sets under mild assumptions. Namely,
a feasible solution x ∈ X for the tractable refor-
mulation of the safe approximation

f(x, ζ) ≤ 0 ∀ζ ∈ Z (3)

satisfies the chance constraint (1) with at least
1 − ǫ probability where Z denotes a ‘bounded’
uncertainty set.
The accuracies of the obtained approximations
in [10, 11] are good when the number of uncer-
tainty parameters is high. Associated approxi-
mations are famous because they yield tractable
robust reformulations for (1) using modern robust
optimization (RO) techniques. We shall delve into
details of these RO methods in the next section.
Chen et al. [12] propose a conservative approx-
imation of a joint chance constraint in terms
of a worst-case conditional value-at-risk (CVaR)
constraint. The resulting approximation out-
performs the Bonferroni approximation that is
known to be pessimistic ( [10, 12–14]). Zym-
ler et al. [14] propose a method for approximat-
ing joint chance constraints when the first- and
second-order moments together with the support
of the uncertainty parameter are known. Simi-
lar to the safe approximations methods that are
mentioned above, extension of our approach to
the joint chance constraint is also straightforward;
later in §3, the associated extension shall be men-
tioned. Calafiore and Campi [15] and Campi and
Garatti [16] substitute the chance constraint with
a finite number of constraints which are randomly
sampled from the original constraint according to
the known distribution of the uncertainty param-
eter. The authors show that the resulting solution
that comes out of the randomized approach fails
to satisfy the chance constraint with the given
confidence level provided that a sufficient number
of samples is drawn.
In practice, we usually have partial or no infor-
mation on the probability distribution P, since it
needs to be estimated from historical data. This
is why it makes sense to pass to ambiguous chance
constraint. The term ‘ambiguous’ stands for the
uncertainty in the probability distribution. In
other words, the distribution of the uncertainty

parameters is itself uncertain ( [25]). The am-
biguous chance constraint can be formulated as
follows

Prζ∼P {ζ : f(x, ζ) ≤ 0} ≥ 1− ǫ ∀P ∈ P, (4)

where P belongs to a family P of distributions
and the chance constraint is satisfied for all (∀)
probability distributions in P. This introduces
an additional computational complexity in solv-
ing the problem aside from the existing difficul-
ties that are mentioned above. To the best of our
knowledge, there is no systematic and exact way
of solving ambiguous chance constraint problems
for general family classes with continuous distri-
butions. Formulating ambiguity in the probabil-
ity distribution has taken attention of scholars
from different fields. In the absence of full in-
formation on the probability distribution or when
only a set of possible distributions P is known,
it is natural to optimize the expectation function
corresponding to the worst-case probability dis-
tribution in P. This lead to the following for-
mulation: [minx∈X supP∈P EP[f(x, ζ)]]. For more
details, we refer to [17–20]. Moreover, ambiguity
in the probability distribution is also addressed
by [21–23] in economics.
Ambiguity in the context of the chance con-
strained optimization has been studied by [10,24,
25]. It is important to point out that the am-
biguous chance constraint is ‘severely’ intractable
compared to the regular chance constraint. Good
news is that, as it is pointed out by [26,27], robust
reformulation methods for chance constraints can
be straightforwardly extended to the ambiguous
chance constraints and this is why the adjec-
tive ‘ambiguous’ is generally skipped. Erdoğan
and Iyengar [24] define the distribution family
P in (4) using the Prohorov metric. The au-
thors propose a robust sampled problem that is
a good approximation for the associated ambigu-
ous chance constrained problem with high proba-
bility. Yanıkoğlu et al. [25] propose an iterative al-
gorithm that constructs the uncertainty set yield-
ing a tractable robust counterpart that safely ap-
proximates the ambiguous chance constraint; the
authors use the φ-divergence metric and histori-
cal data on the uncertainty parameters to define
the distribution family P. For further details on
such approximations, we refer reader to [25–27].
In this paper, we focus on robust reformulations
of ambiguous chances constraints with discrete
probability distributions. More precisely, P corre-
sponds to a discrete probability distribution, i.e.,
we have a finite set of scenarios for uncertainty
realizations {ζ1, ζ2, . . . , ζ|S|} where each scenario
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s ∈ S or realization ζs has an individual proba-
bility ps ≥ 0 of being realized; needless to say all
probabilities are summed to 1, i.e.,

∑

s∈S ps = 1.
Finite supports are often faced in practice when
data at hand is discrete, some examples are, de-
mand, the number of customers in a queue, the
amount of inventory in a production facility, the
time and quantity of returning products in a re-
verse logistics network, the number of quality
grades in remanufacturing and so on. On the
other hand, empirical distributions are often used
when the data at hand is scarce so that no con-
tinuous distribution can be fitted; or when the
information is based on an expert opinion. Last
but not least, continuous supports may be re-
duced to finite ones in order to yield computa-
tional tractability for the problem at hand (e.g.,
see [28]).
When ζ follows a discrete probability distribu-
tion, the chance constraint (1) can be equivalently
reformulated as

f(x, ζs) ≤ M(1− ys) ∀s ∈ S
∑

s∈S

psys ≥ 1− ǫ,

where binary variable ys ∈ {0, 1} is 1 if solution
x ∈ X satisfies the constraint [f(x, ζs) ≤ 0] for
realization ζs or 0 otherwise, and M denotes a
large constant; also see [29,30] that adopt the as-
sociated big-M reformulation technique and pro-
pose branch-and-bound/cut solution approach to
chance constrained problems under finite support.
As it is pointed out above, the probability distri-
bution P that has to be known is often not (ex-
actly) known in practice; the probability vector

p ∈ [0, 1]|S| of the discrete uncertainty param-
eter ζ ∈ R

L often comes from an expert opin-
ion or a forecast, i.e., the probability vector that
determines the structure of the uncertainty is in
itself uncertain. This is why, working with so-
called a nominal probability vector may cause a
lot of problems if the associated ambiguity in the
discrete probability distribution is not taken into
account. The ambiguous chance constraint (4)
can be equivalently reformulated as the following
semi-infinite mixed-integer problem when P fol-
lows a discrete probability distribution.

f(x, ζs) ≤ M(1− ys) ∀s ∈ S
∑

s∈S

psys ≥ 1− ǫ ∀p ∈ U , (5)

where U denotes the ambiguity (or uncertainty)
set that supports the family of distributions P in
the ambiguous chance constraint. As pointed out
above, (5) is a semi-infinite optimization problem,

i.e., it has finitely many decision variables and in-
finitely many constraints (see, ∀p ∈ U) that is
intractable in its current form. Using the robust
optimization paradigm, the tractable reformula-
tions of (5) shall be proposed in this paper. The
associated approach is exact, i.e., it equivalently
reformulates the ambiguous chance constraint by
exploiting the deterministic structure of the dis-
tribution, when the random perturbation in p is
independent; and we propose safe approximations
when p is dependent.
Hanasusanto et al. [31] derive explicit conic rep-
resentations of ambiguous chance constraints for
tractable classes and efficiently solvable conserva-
tive approximations for the intractable ones us-
ing tools from distributionally robust optimization
(DRO). The authors, derive tractable reformu-
lations of the ambiguous individual chance con-
straint when the ambiguity set is Markov. For
the joint case, the tractability is obtained only for
conic moment ambiguity sets. The authors pro-
pose a conservative approximation algorithm for
the intractable cases which is based on improving
the fixed decision at each stage of the algorithm.
Hanasusanto et al. [32] study conic representable
reformulations of ambiguous joint chance con-
straints when the mean and the support, and the
upper bound on the dispersion of the uncertainty
parameters are known. The authors also pro-
vide the conic representable reformulation of the
optimistic chance constraint for specific classes.
Jiang and Guan [33] study distributionally robust
chance constraints when the family of distribu-
tions is based on a phi-divergence measure. The
problems are efficiently solvable by using strong
cutting planes and hence a branch-and-cut algo-
rithm. Chen et al. [34] propose distributionally
robust reformulations of data-driven chance con-
straints using the Wasserstein ball uncertainty set
that is often used in DRO framework. The re-
sulting RC is mixed-integer linear program that
can be solved for moderate sized instances. The
method can also be extended to joint chance
constraints when the uncertainty is in the right-
hand side (RHS). Similarly, Ji and Lejeune [35]
study distributionally robust chance-constrained
programming with data-driven Wasserstein am-
biguity sets. They strengthen the formulations
by adopting valid inequalities. The resulting RC
is a mixed-integer second-order cone program-
ing (MISOCP) reformulation for the exact model
with RHS uncertainty. The authors also pro-
pose a MISOCP relaxation for models with ran-
dom technology vector. Zhang et al. [36] study
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distributionally robust reformulation of chance-
constrained bin packing problem. Using two mo-
ments of the uncertainty, they construct the am-
biguity set and the resulting robust reformulation
of the problem. To strengthen second-order RC
formulation, the authors adopt valid polymatroid
inequalities that improves the computational per-
formance the off-the-self solvers such as GUROBI
and CPLEX for the given test instances. Cheng
et al. [37] consider distributionally robust ver-
sion of the quadratic knapsack problem where
the knapsack constraint coincides with an am-
biguous chance constraint such that the two mo-
ments of the distributions in the ambiguity sets
are partly known. The resulting RC is a semi-
definite programming (SDP) relaxation reformu-
lation. The joint case is more challenging and the
authors propose two tractable methods to find up-
per and lower bounds for the SDP relaxation. Hu
and Hong [38] propose a DRO framework that
adopts the Kullback-Leibler phi-diverge measure
to model the ambiguity set of the unknown prob-
ability distribution. The authors show that the
associated approach can also be used to reformu-
late ambiguous chances constraints when the con-
fidence level of the phi-divergence measure is set
to the probability threshold of the chance con-
straint. Xie and Ahmed [39] propose robust refor-
mulations of ambiguous chance constrained prob-
lems when the ambiguity set is specified by con-
vex moment constraints. They show that distri-
butionally robust chance constrained problem can
be modeled as a convex optimization problem un-
der certain conditions. Xie et al. [40] propose
a Bonferronni approximation approach to solve
distributionally robust joint chance constrained
programs. The author shows that the associated
approximation is convex and tractable when the
family of distributions is specified by moments or
by marginal distributions. Xie [41] studies exact
and approximate reformulations of distribution-
ally robust chance constrained problems where
the ambiguity set is determined by Wasserstein
metric. The author adopts a branch and cut al-
gorithm to solve the resulting reformulations.
Finite dimensional uncertainty parameters are of-
ten faced in regression analysis and worst-case ex-
pectation problems with Wasserstein ambiguity
sets often yield efficient second-order conic formu-
lation; we refer reader to [42] for distributionally

robust regression. Similarly, Özmen et al. [43] ro-
bustify an extension of multivariate adaptive re-
gression splines (MARS) under polyhedral uncer-
tainty (i.e., so-called RCMARS) by adopting RO;
we refer reader to [44] for MARS and to [45] for its
deterministic extension, i.e., so-called CMARS.

For robust reformulations of various risk measures
that are often used in financial optimization, we
refer to [12, 46–48], and references therein.
The remainder of the paper is organized as fol-
lows. In §2, we first give a brief introduction
to the RO paradigm (§2.1), then we propose the
robust reformulations of the ambiguous chance
constraints with discrete probability distributions
(§2.2). In §2.3, we propose a safe approximation
algorithm for the robust reformulations. In §3,
we present extensions of our approach. In §4, we
present numerical experiments. Finally, we give
our concluding remarks and future research direc-
tions in §5.
Notation. Bold-face, lower-case letters and num-
bers represent vectors, e.g., 0 denotes a vector of
zeros and e is the all-one vector. Bold-face, upper-
case letters represent matrices. The dimensions of
the vectors and matrices will usually be clear from
the context. Lower-case letters refer to vector el-
ements, e.g., ps denotes the sth element of vector
p. A vector or matrix superscript indicates either
the transpose (⊤) or the element-wise power of
a given vector or matrix, e.g., q−2 and Q2; only
exceptions are indexes of probability vectors (p0,

p(j)) and uncertainty parameter realizations (ζs).
P denotes a probability distribution and P de-
notes a family of distributions. The uncertainty
set is given by Z where ζ ∈ Z ⊆ R

L denotes the
uncertainty parameter and L is the number of un-
certain parameters. The ambiguity set is given by
U where ξ ∈ U ⊆ R

|S| denotes the perturbation
vector of the probability vector p ∈ [0, 1]|S| and S
denotes the set of indexes for the uncertainty pa-
rameter realizations, i.e., the components of the
probability vector. The subscripts B and E for
the ambiguity set denote the specific properties
of the set, namely, p-box (UB) and p-ellipsoidal
(UE). Finally, “. . .” denotes that the remainder
of an expression shall continue in the next line.

2. Methodology

In this section, we first present the three core steps
of the RO paradigm. Later we adopt RO to am-
biguous chance constraints with discrete probabil-
ity distributions and we to derive the tractable ro-
bust reformulations of the ambiguous chance con-
straints.

2.1. Introduction to robust optimization

For the sake of simplicity, we assume that LHS of
the constraint [f(x, ζ) ≤ 0] is a simple linear func-
tion [f(x, ζ) = (a+Bζ)⊤x] and the uncertainty
parameter ζ resides in a polyhedral uncertainty
set [U = Dζ + d ≥ 0], i.e., the constraint can be
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formulated as follows:

(a+Bζ)⊤x ≤ 0 ∀ζ : Dζ + d ≥ 0, (6)

where x ∈ R
n, a ∈ R

n, B ∈ R
n×L, D ∈ R

m×L,
d ∈ R

m. Next, we present a three step procedure
to remove the universal quantifier (∀) in (6); the
resulting deterministic equivalent reformulation
is often referred to as the ‘tractable’ robust coun-
terpart (RC).

Step 1: The worst-case formulation (6) can be
equivalently reformulated as

a⊤x+ max
ζ: Dζ+d≥0

(B⊤x)⊤ζ ≤ 0. (7)

We now have a nested optimization problem be-
cause we have a maximization inside the con-
straint. Next, we take the dual the inner maxi-
mization problem.

Step 2: Note that by strong duality

max
{

(B⊤x)⊤ζ : Dζ + d ≥ 0
}

=min
{

d⊤y : D⊤y = −B⊤x, y ≥ 0
}

.

Hence (7) is equivalent to

a⊤x+min
y≥0

{d⊤y : D⊤y = −B⊤x} ≤ 0. (8)

Step 3: We can remove the minimization in (8)
because a feasible solution for (8) yields an up-
per bound for the maximization problem by weak
duality (i.e., equivalent at optimality by strong
duality because the problem is convex).

∃ y : a⊤x+d⊤y ≤ β, D⊤y = −B⊤x, y ≥ 0.

Finally, we obtain the tractable RC of the initial
semi-infinite problem (6).
Table 1 presents the RCs of (6) with respect to
a class of uncertainty sets. The only difference
is that the type of duality in Step 3 changes ac-
cording to the uncertainty set at hand, e.g., when
the uncertainty set is a cone, we use conic duality
to obtain the RC; see, the third row of the Table 1.

Table 1. The tractable robust coun-
terparts of uncertain linear con-
straints

Set Z Robust Counterpart Tractability

Box ‖ζ‖∞ ≤ ρ a⊤x + ρ‖B⊤x‖1 ≤ 0 LP

Ball ‖ζ‖2 ≤ ρ a⊤x + ρ‖B⊤x‖2 ≤ 0 CQP

Cone Dζ + d ∈ K

a⊤x + d⊤y ≤ 0

D⊤y = −B⊤x

y ∈ K∗

Conic

Notice that the three step procedure shall be sim-
ilarly applied in our setting to derive the tractable
RC reformulations of the semi-infinite probability

threshold constraint:
∑

s∈S

psys ≥ ǫ ∀p ∈ U (SI)

for the two different classes of the ambiguity set
U . We refer reader to [26, 49] and the references
therein for further details on the RO paradigm.

2.2. Robust reformulation of ambiguous

chance constraint

In this section, we focus on the robust reformu-
lations of the ambiguous chance constraints for
two classes of uncertainty sets, namely, ‘p-box’
and ‘p-ellipsoidal’ uncertainty sets that are specif-
ically created for the uncertain probability vector
p ∈ {0, 1}|S| that resides in the plane sections of
box and ellipsoidal regions. To this end, we shall
develop the tractable RC reformulations of the
semi-infinite probability constraint (SI) in

f(x, ζs) ≤ M(1− ys) ∀s ∈ S
∑

s∈S

psys ≥ 1− ǫ ∀p ∈ U . (re-5)

The formal representations of p-box (UB) and p-
ellipsoidal (UE) ambiguity sets are given as

UB =
{

p = p0 + ξ ∈ R
|S| : ℓ ≤ ξ ≤ u, e⊤ξ = 0

}

and

UE =
{

p = p0 + ξ ∈ R
|S| : ||Qξ||2 ≤ σ, e⊤ξ = 0

}

,

where p0 denotes the nominal probability vector
given that p0 ≥ 0 and

∑

s∈S p0s = 1; ξ is the
uncertainty vector that determines the dispersion
from the nominal probability vector; ℓ and u are
the upper and lower bound vectors for the p-box;
σ denotes the radius (or the worst-case dispersion
from the nominal vector p0) in the p-ellipsoidal,

Q ∈ R
|S|×|S|(:= diag(q)) is a diagonal matrix

where vector q ∈ R
|S| contains the scaling param-

eters that determine the shape of the ellipsoid,
e.g., when q = e, the resulting uncertainty set is
a ball. Notice that the sum of the elements of the
uncertainty vector ξ is zero (i.e., [

∑

s∈S ξs = 0]) in
order to guarantee that the sum of the elements
of the unknown (or ambiguous) probability vector
to be 1 (i.e., [

∑

s∈S ps = 1]).
Independent versus dependent data. In some
cases, it may be known that the uncertainty pa-
rameters ζsj are independent for j ∈ {1, . . . , L}.
If this is the case, then the joint probability ps
of the uncertainty vector [ζs1 , ζ

s
2 , . . . , ζ

s
L] is being

realized is equivalent to the product of the mar-
ginal probabilities of the uncertainty parameters

for the given scenario, i.e., [ps = p
(s)
1 · · · p(s)L ]. This

results in complex ambiguity sets. We shall delve
into details of such reformulations later in §3.3.
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In the remainder, for the sake of simplicity, we
assume that the elements of the ambiguous prob-
ability vector p are independent and the un-
certainty parameter (ζs) is realized as a vector.
Other assumptions are listed below.
Assumptions. (A1) We assume that f(x, ζ)
is linear in the decision variable x (extended in
§3.2). (A2) Without loss of generality, we assume

that UB,E ⊆ [0, 1]|S|, i.e., the parameters ℓ,u,Q,
and σ are selected such that [p ≥ 0 ∀p ∈ UB,E ]
is satisfied.
Selecting the parameters of p-ellipsoidal uncer-
tainty set. The standard form of the ellipsoid
inequality is

ξ21
α2
1

+ · · ·+
ξ2|S|

α2
|S|

≤ 1,

where αi denotes the half length of the ith princi-
pal semiaxis of the ellipsoid, i.e., αi > 0 for all i ∈
{1, . . . .|S|}. Let parameter “γi ∈ (0, 1]|S|” be the
percentage of dispersion [(1−γi)p

0
i , (1+γi)p

0
i ] from

the nominal probability p0i for i = {1, . . . , |S|},
then we may set the half length αi to the as-
sociated dispersion, i.e., αi = γip

0
i for all i ∈

{1, . . . , |S|}. Eventually, the p-ellipsoidal uncer-
tainty set UE that satisfies (A2) can be generated
by setting σ = 1 and

qi =
1

γipi
∀i ∈ {1, . . . , |S|},

where Q = diag(q). Notice that one can also set
σ and Q using other methods as long as (A2) is
satisfied; here we present a systematic method
that can be easily implemented in practice.

Theorem 1 and 2 provide the tractable RCs of
(SI) for the p-box and p-ellipsoidal uncertainty
sets; respectively.

Theorem 1. The vector y ∈ {0, 1}|S| satisfies
∑

s∈S

psys ≥ 1− ǫ ∀p ∈ UB (SIB)

if and only if y, θ, w and λ satisfy the following
RC problem:

y⊤p0 + u⊤w + ℓ⊤θ ≥ 1− ǫ

λe+w + θ − y = 0

θ ≥ 0,w ≤ 0, λ urs,

where e is the all-one vector, and w,θ, and λ de-
note the dual variables.

Proof. As in Step 1 of the three step procedure
in §2.1, (SIB) can be equivalently reformulated as

min
p∈UB

∑

s∈S

psys ≥ 1− ǫ.

The above expression is equivalent to the follow-
ing

min
ξ

{

∑

s∈S

ξsys : ℓ ≤ ξ ≤ u

}

≥ 1− ǫ− y⊤p0.

Notice that y⊤p0 is taken out of the minimiza-
tion because it is a fixed term for given y. Let
us now focus on the minimization problem in the
constraint LHS:

min
ξ

∑

s∈S

ξsys

s.t.
∑

s∈S

ξs = 0 (λ)

ξ ≤ u (w)

ξ ≥ ℓ (θ),

where each term in the parentheses denotes the
dual variable of the associated constraint.
Next we take the dual of the problem as in Step
2:

max
w≤0, θ≥0, λ

u⊤w + ℓ⊤θ (≥ 1− ǫ− y⊤p0)

s.t. λ+ ws + θs = ys ∀s ∈ S.

Finally, we remove the max imization and obtain
the tractable reformulation of (SIB) �

Consequently, the tractable RC of the robust re-
formulation of the ambiguous chance constraint
(5) with respect to the p-box uncertainty set be-
comes

f(x, ζs) ≤ M(1− ys) ∀s ∈ S

y⊤p0 + u⊤w + ℓ⊤θ ≥ 1− ǫ

λe+w + θ − y = 0

x ∈ X,y ∈ {0, 1}|S|

w ≤ 0, θ ≥ 0, λ urs.

(RCB)

The resulting problem (RCB) is a mixed-integer
linear problem (MILP) that can be solved by com-
mercial solvers (e.g., CPLEX) for moderate sized
instances; given that there exists a linear objec-
tive function [c⊤x] that we either minimize or
maximize.
Similarly, Theorem 2 presents the tractable RC of
(SI) with respect to the p-ellipsoidal uncertainty
set.

Theorem 2. The vector y ∈ {0, 1}|S| satisfies
∑

s∈S

psys ≥ 1− ǫ ∀p ∈ UE (SIE)
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if and only if y, β, and λ satisfy the following RC
problem:

−y⊤
β p

0 + 0.25
(

λ2e+ y + 2yλ

)⊤
q−2 + . . .

β2σ2 + β(1− ǫ) ≤ 0

λe−M(e− y) ≤ yλ ≤ λe+M(e− y)

βe−M(e− y) ≤ yβ ≤ My

−My ≤ yλ ≤ My

0 ≤ yβ ≤ βe

β ≥ ε, λ urs,

where e is the all-one vector, yλ and yβ are the
auxiliary variables to linearize λy and βy; respec-
tively, β and λ are the dual variables, and ε is a
small positive constant.

Proof. Similar to the proof of Theorem 1, (SIE)
can be reformulated as

min
p∈UE

∑

s∈S

psys ≥ 1− ǫ.

The Lagrangian dual problem of the minimization
problem in the constraint LHS is given by

max
β≥0, λ

min
ξ

ξ⊤y + β(||Qξ||22 − σ2) + λ
∑

s∈S

ξs

where β ≥ 0 and λ denote the dual variables
for the p-ellipsoidal constraints [||Qξ||22 ≤ σ2]
and [

∑

s∈S ξs = 0]; respectively. From the first-

order condition, we have [y + 2βQ2ξ + λe = 0]
(Q⊤Q = Q2 because Q is a diagonal matrix), i.e.,
the optimal ξ∗ is

ξ∗ = −Q−2(λe+ y)

2β
.

Consequently, we substitute ξ∗ for ξ in the dual
problem. Next, we can remove the max imization
as in Step 3 and the LHS becomes

− 1

2β

(

λe⊤Q−2y + y⊤Q−2y + . . .

λ2e⊤Q−2e+ λy⊤Q−2e

)

+ . . .

1

4β

(

λ2e⊤Q−2e+ 2λe⊤Q−2y + . . .

y⊤Q−2y

)

− βσ2

which is [≥ 1 − ǫ − y⊤p0]. It is important to
point out that assuming β > 0 does not affect the
optimum solution because the first constraint is
binding at optimality [||Qξ∗||2−σ2 = 0] (also see
Assumption A2), i.e., the complementary condi-
tion [β∗(||Qξ∗||2−σ2) = 0] is satisfied for β∗ > 0.
Next we multiply the both sides of the inequality

by β (> 0):

−
(

y⊤Q−2y + λ2e⊤Q−2e

4β
+

λe⊤Q−2y

2β
+ σ2β

)

≥ 1− ǫ− y⊤p0 (×β both sides)

which results in the following inequality

0.25
(

y2 + λ2e+ 2λy
)⊤

q−2 + . . .

β2σ2 + β(1− ǫ)− βy⊤p0 ≤ 0.

Notice that since y is a vector of binary vari-
ables, y⊤y is equivalent to y⊤e, andQ = diag(q).
Moreover, we introduce a vector of auxiliary vari-

ables yβ ∈ R
|S|
+ (:= βy) and the following group

of constraints to linearize βy:

yβ ≥ βe−M(e− y)

yβ ≤ My

yβ ≤ βe

yβ ≥ 0,

where M is a large constant. Similarly, we define
yλ ∈ R

|S| (:= λy) and the following constraints
to linearize λy:

yλ ≤ My

yλ ≥ −My

yλ ≤ λe+M(e− y)

yλ ≥ λe−M(e− y).

The final formulation of the RC is obtained after
the above mentioned substitutions are made and
the additional constraints are included. �

Eventually, the tractable RC of (5) with respect
to the p-ellipsoidal uncertainty set becomes

f(x, ζs) ≤ M(1− ys) ∀s ∈ S

σ2β2 + β(1− ǫ)− y⊤
β p

0 + . . .

0.25
(

y + λ2e+ 2yλ

)⊤
q−2 ≤ 0

λe−M(e− y) ≤ yλ

λe+M(e− y) ≥ yλ

βe−M(e− y) ≤ yβ ≤ My

−My ≤ yλ ≤ My

0 ≤ yβ ≤ βe

x ∈ X,y ∈ {0, 1}|S|, β ≥ ε, λ urs.

(RCE)

Notice that (RCE) is a mixed-integer second-
order cone problem (MISOCP) that yields a con-
vex relaxation problem; SOCP is a tractable
mathematical optimization class and supported
by commercial solvers such as CPLEX.

Remark 1. We assume that M is large enough
to guarantee that big-M constraints are equiva-
lent to the constraints in the original formulation.
On the other hand, they are also small enough
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to avoid excessive branching, i.e., they must be
systematically generated in the numerical experi-
ments.

Remark 2. The second constraint in (RCE)
can be equivalently reformulated as the following
second-order cone constraint:
∥

∥

∥

∥

1−
(

y⊤
β p

0 − 0.25 (y + 2yλ)
⊤
q−2 − β(1− ǫ)

)

/2;

0.5λq−1; σβ

∥

∥

∥

∥

2

≤

1 +
(

y⊤
β p

0 − 0.25 (y + 2yλ)
⊤
q−2 − β(1− ǫ)

)

/2.

In summary, using Theorem 1 and 2, one may
obtain exact robust reformulations of unique am-
biguous chance constraints with discrete proba-
bility distributions when the unknown scenario
probabilities [p1, p2, . . . p|S|] are independent. The
mathematical optimization complexity of the re-
sulting RC is MILP for the p-box and is MIS-
OCP for the p-ellipsoidal uncertainty set given
that f is linear in the decision variable x ∈ X.
In §§3.1-3.3, we shall relax some of these proper-
ties in order to tackle with more general classes of
ambiguous chance constraints. Good news is that
our approach straightforwardly extends for these
new classes even though it is not necessarily ex-
act but a safe approximation method when the
elements of the probability vector are dependent.

2.3. Safe Approximation Algorithm

Notice that when the number of scenarios (|S|)
increases, (RCB) and (RCE) may be challenging
mathematical optimization problems to be solved
in a given time limit. This is why, in this sec-
tion, we present an efficient iterative algorithm
that shall yield a safe approximation for ambigu-
ous chance constraints with discrete probability
distributions. We illustrate our approach using
the following (implicit) notation of the unique am-
biguous chance constrained problem:

min
x∈X

c⊤x

s.t. Prζ∼P {ζ : f(x, ζ) ≤ 0} ≥ 1− ǫ ∀P ∈ P,

where 1− ǫ is the prescribed probability, and ζ is
the primitive uncertainty vector. The four main
steps of the algorithm are explained in detail be-
low.
Step 0. We scale the uncertainty parameters
to [−1, 1]. W.l.o.g., an uncertainty parameter

ζ̂i = [ℓi, ui] for i ∈ S can be scaled to [−1, 1]
by adopting the following linear transformation:

ζ̂i = NVi +HLi × ζi, (9)

where NVi = 0.5(ℓi + ui), HLi = 0.5(ui − ℓi), and
ζi ∈ {−1, 1} is the so-called primitive uncertainty
parameter.
Step 1. Derive the RC of the problem at hand

max
x∈X

c⊤x

s.t. f(x, ζ) ≤ 0 ∀ζ ∈ U (10)

where U ≡ {ζ ∈ [−1, 1]|L| : ||ζ||2 ≤ Ω}. It is
important to point out that the associated RC
yields SOCP when the f is linear in x and ζ; and
it is also tractable for the nonlinear case when f
is concave in ζ for any given x (see, [50]).
Step 2. Next, we find the uncertainty parame-
ter realizations that are satisfied for the optimal
solution x∗ of (10). Namely,

y∗s = 1 if f(x∗, ζs) ≤ 0;= 0 o.w. ∀s ∈ S.

Step 3. Fix y = y∗ and solve (RCB) if the ambi-
guity set of the uncertain probability vector p is
the p-box; or solve (RCE) if the associated set is
the p-ellipsoidal. If there exists a feasible solution
for the RC at hand (for given y = y∗) then we
terminate the algorithm and record x∗ as the fi-
nal solution of the algorithm. Else, we go to Step
4.
Step 4. We increase Ω by the step size ω and go
to Step 1.
The table representation of the so-called stepwise
ellipsoidal algorithm (SEA) that safely approxi-
mates the ambiguous chance constrained problem
is given below.

Algorithm 1: Stepwise Ellipsoidal Algorithm

Inputs: Probability threshold ǫ, nominal
probability distribution p0, step
size ω, radius of the ambiguity
set σ, realizations ζ1, . . . , ζ|S|, op-
timization problem.

Outputs: Robust optimal solution x∗.

Step 0: Scale uncertainty parameters (ζsi )
to [-1, 1] and set Ω = 0.

Step 1: Solve the robust counterpart of the
given problem with respect to the
uncertainty set ||ζ||2 ≤ Ω and find
the optimal solution x∗.

Step 2: Check the satisfied scenarios by x∗:

f(x∗, ζs) ≤ M(1− ys) ∀s ∈ S.

Record these scenarios to vector y∗.

Step 3: Solve (RCE) for given ǫ, σ, p0 when
y = y∗.

If (RCE) yields a feasible solution
then terminate the algorithm.

Else go to Step 4.

Step 4: Set Ω = Ω + ω and go to Step 1.

Extensions of Algorithm 1. 1) The associated
algorithm can be easily extended to joint chance
constraints and non-linear uncertain inequalities
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as long as the original problem is tractable, i.e.,
the algorithm does not introduce additional math-
ematical optimization complexity to that of the
original problem. 2) One may also adopt a box
uncertainty set in Step 1. We prefer using the el-
lipsoidal uncertainty set while we are generating
our ambiguity set because it yields more diversi-
fied solution to the RC compared with the box
uncertainty set; also see, [51]. 3) If the ambiguity
set is p-box, in Step 3 we solve (RCB) instead of
(RCE).
Complexity. 1) It is important to point that
the mathematical optimization complexities of
(RCB) and (RCE) in Step 3 are reduced to LP
and SOCP; respectively, because we fix the bi-
nary variable y to y∗ that comes out of Step 2.
2) In an L-dimensional uncertainty space, the ra-
dius of the ellipsoid (or ball) Ω can be at most√
L since the ball shall be larger than the sup-

port of the uncertainty parameter ζ, i.e., given
by ζ ∈ [−1, 1]L, when it gets larger than

√
L.

Therefore, Ω is updated in at most O(ω−1
√
L) it-

erations of the algorithm. In addition, we need
the check |S| scenarios at each iteration of the al-
gorithm in Step 2. Eventually, the total number
of iterations of the algorithm is bounded above by
O(ω−1

√
L|S|).

3. Extensions

In this section, we present extensions of our ap-
proach to joint chance constraints, nonlinear in-
equalities, and dependent probability vectors. It
is important to stress that these extensions are
not straightforward in general, nevertheless, our
approach can be easily extended to the joint
chance constraint with slight modification and it
is unaffected from nonlinear inequalities, and we
propose safe approximations for the dependent
case.

3.1. Joint chance constraints

If we have more than one uncertain constraint and
aim to find a solution that jointly satisfies these
constraints with at least probability 1 − ǫ, then
we have the following joint (ambiguous) chance
constrained formulation:

Prζ∼P {ζ : fk(x, ζ) ≤ 0 ∀k ∈ K} ≥ 1− ǫ

∀P ∈ P,
(11)

where K denotes the set of constraint indexes.
Unlike classic approaches, our approach straight-
forwardly extends to a joint chance joint chance
constraint. More precisely, one can equivalently

reformulate (11) as

fk(x, ζ
s) ≤ M(1− ys) ∀k ∈ K, ∀s ∈ S

∑

s∈S

psys ≥ 1− ǫ ∀p ∈ U . (12)

The tractable RC of (12) when U is the p-box
uncertainty set is given in Corollary 1.

Corollary 1. The vectors x ∈ X and y ∈
{0, 1}|S| satisfy

fk(x, ζ
s) ≤ M(1− ys) ∀k ∈ K, ∀s ∈ S

∑

s∈S

psys ≥ 1− ǫ ∀p ∈ UB

if and only if x, y, θ, w, and λ satisfy the fol-
lowing RC problem:

fk(x, ζ
s) ≤ M(1− ys) ∀k ∈ K, ∀s ∈ S

y⊤p0 + u⊤w + ℓ⊤θ ≥ 1− ǫ

λe+w + θ − y = 0

θ ≥ 0,w ≤ 0, λ urs,

(jRCB)

where w,θ, and λ denote the dual variables.

Proof. The first group of constraints [fk(x, ζ
s) ≤

M(1 − ys) ∀k ∈ K, ∀s ∈ S] will not be af-
fected while we are deriving the RC. The tractable
RC of the semi-infinite constraint [

∑

s∈S psys ≥
1− ǫ ∀p ∈ UB] is given in Theorem 1. �

The mathematical optimization complexity of the
robust reformulation of the joint chance con-
straint (jRCB) is the same with that of (RCB);
RC of (11) for the p-ellipsoidal ambiguity set can
be similarly derived by adopting Theorem 2.

3.2. Nonlinear inequalities

The mathematical optimization complexity of our
approach is unaffected when we have nonlinear-
ity in the uncertainty parameter ζ, e.g., when f
is linear in x. In this case, optimization com-
plexity of the resulting RCs for the p-box and
the p-ellipsoidal ambiguity sets are MILP and
MISOCP; respectively, as in (RCB) and (RCE).
On the other hand, when f is nonlinear in x,
the structure of nonlinearity in x determines the
problem complexity, i.e., (SI) does not introduce
additional mathematical optimization complexity
to that of the original problem.

3.3. Dependent probability vector

In the previous reformulations, we have assumed
that the elements of the ambiguous joint proba-
bility vector p that reside in the ambiguity set U
to be independent, e.g., the off-diagonal elements
of Q are 0 in p-ellipsoidal ambiguity set. Never-
theless, the probabilities in the ambiguity set U
may be dependent in two ways:
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(D1) probabilities [p̂1, p̂2, . . . , p̂|S|] of some re-

alizations {ζ(1), ζ(2), . . . , ζ(|S|)} are corre-
lated (e.g., when the probability of high
demand increases in period t, the proba-
bility of high demand may increase or de-
crease in period t+ 1), or

(D2) uncertainty parameters ζi are indepen-
dent for i = {1, . . . , L} and the mar-
ginal probabilities follow ambiguous dis-
crete probability distribution.

The dependency in (D1) can be easily formulated
by setting the value of Q such that (Q⊤Q)−1

corresponds to the covariance matrix in the p-
ellipsoidal ambiguity set and the RC may be de-
rived similar to Theorem 2; for the sake of brevity,
it is skipped. However, the latter dependency
(D2) is somewhat more complex, and we propose
safe approximations for the associated case in the
remainder of this section.
Notice that, when the uncertainty parameters
are independent as in (D2), the joint probabil-
ity is equivalent to the product of the individ-
ual probabilities, i.e., probabilities of different un-
certainty realizations become dependent because
joint probabilities [p̂1, p̂2, . . . , p̂|S|] share common
or complementary terms.
Extension of the semi-infinite representation (5)
of the ambiguous chance constraint for (D2) is
given as follows

f(x, ζi1,i2...,iL) ≤ M(1− Yi1,i2...,iL)

∀(i1, i2 . . . , iL) ∈ S

∑

(i1,i2...,iL)∈S

L
∏

j=1

(

p
(j)
ij

+ ξ
(j)
ij

)

Yi1,i2...,iL ≥ 1− ǫ

∀ξ(j) ∈ U (j)
B,E , j ∈ {1, 2, . . . , L},

where an aggregate scenario is indexed by
(i1, i2 . . . , iL) for ij ∈ Sj for all j ∈ {1, . . . , L};
Sj denotes the set of indexes (ij) for possible re-

alizations of the jth uncertainty parameter ζ
(j)
ij

,

i.e., an aggregate scenario set S is equivalent to
the Cartesian product of the individual sets, i.e.,
S := S1 × S2 . . . × SL; an aggregate uncertainty

vector ζi1,i2...,iL = [ζ
(1)
i1

, ζ
(2)
i2

, . . . , ζ
(L)
iL

] is a collec-
tion of uncertainty parameter realizations at sce-

nario (i1, i2 . . . , iL); p
(j)
ij

denotes the probability of

the ithj realization of the jth uncertainty parame-

ter ζ
(j)
ij

is being realized; ξ
(j)
ij

denotes the random

perturbation in probability p
(j)
ij

where U (j)
B and

U (j)
E are the associated uncertainty sets; Yi1,i2...,iL

is a 0-1 variable that takes value 1 if the solution
x satisfies the constraint for the associated sce-
nario or 0 otherwise. The formal representations

of the p-box and p-ellipsoidal ambiguity sets for
probability distributions of the independent un-
certainty parameters are as follows.

U (j)
B =

{

p(j) = p0(j) + ξ(j) ∈ R
|Sj | : . . .

ℓ(j) ≤ ξ(j) ≤ u(j), . . .

∑

ij∈Sj

ξ
(j)
ij

= 0 ∀j ∈ {1, . . . , L}
}

and

U (j)
E =

{

p(j) = p0(j) + ξ(j) ∈ R
|Sj | : . . .

∣

∣

∣

∣

∣

∣
Q(j)ξ(j)

∣

∣

∣

∣

∣

∣

2
≤ σj , . . .

∑

ij∈Sj

ξ
(j)
ij

= 0 ∀j ∈ {1, . . . , L}
}

.

The probability that the scenario (i1, i2 . . . , iL),

i.e., [ζ
(1)
i1

, ζ
(2)
i2

, . . . , ζ
(L)
iL

], is being realized is equiv-
alent to the product of the individual probabili-
ties:

Pi1,i2...,iL =

L
∏

j=1

(

p
(j)
ij

+ ξ
(j)
ij

)

,

Eventually, the semi-infinite probability threshold
constraint for the joint distribution can be refor-
mulated as the following mathematical optimiza-
tion problem for the p-box uncertainty set.

(IB) min
P ,p(.)

∑

(i1,i2,...,iL)∈S

Pi1,i2...,iL Yi1,i2...,iL

s.t. Pi1,i2...,iL =

L
∏

j=1

(

p
(j)
ij

+ ξ
(j)
ij

)

∀(i1, i2, . . . , iL) ∈ S (13)
∑

i∈Sj

ξ
(j)
ij

= 0 ∀j ∈ {1, . . . , L} (14)

ℓ
(j)
ij

≤ ξ
(j)
ij

≤ u
(j)
ij

∀i ∈ Sj , ∀j ∈ {1, . . . , L}, (15)

where (13) formulates the joint probability as an
equality constraint for the ease of exposition, (14)
ensures that probability of each independent un-
certainty parameter is summed to 1, and (15) de-
termines the bounds of the box uncertainty sets,
and [val(IB)≥ 1− ǫ]. It is easy to see that (IB) is
nonconvex and highly nonlinear because of (13),
and this is why it cannot be dualized in its current
form. The following theorem relaxes the nonlin-
ear structure of (IB) and provides a lower bound
for val(IB).

Theorem 3. Let S = S1 × S2... × SL,

ℓi1,i2...,iℓ =
∏L

j=1

(

p
(j)
ij

+ ℓ
(j)
ij

)

and ui1,i2...,iℓ =
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∏L
j=1

(

p
(j)
ij

+ u
(j)
ij

)

∀i ∈ Sj ∀j ∈ {1, . . . , L}
the following mathematical optimization problem:
{

min
P

∑

s∈S

PsYs :
∑

s∈S

Ps = 1

ℓs ≤ Ps ≤ us ∀s ∈ S

}

(rIB)

is a relaxation of (IB).

Proof. Let (P ,p(1), . . . ,p(ℓ)) be a feasible solu-

tion of (IB). If we prove that P ∈ R
|S1|×|S2|...×|SL|

is feasible for (rIB), then we can conclude that
(rIB) is a reduced relaxation of (IB).

To begin with, let p̂
(j)
ij

= p
(j)
ij

+ ξ
(j)
ij

, (14) im-

plies that
∑

ij∈Sij
p̂
(j)
ij

= 1 for all j ∈ {1, . . . , L}
given that 0 ≤ p̂

(j)
ij

≤ 1 for all ij ∈ Sij for

all j ∈ {1, . . . , L} (by Assumption 2). No-
tice that, probability Pi1,i2...,iL is the product

of independent probabilities p̂(j), i.e., the sum-
mation of the elements of P over all combi-
nations of individual probabilities is equivalent
to 1. Constraints (13) and (14) imply that

Pi1,i2...,iL ≥ ∏L
j=1

(

p
(j)
ij

+ ℓ
(j)
ij

)

and Pi1,i2...,iL ≤
∏L

j=1

(

p
(j)
ij

+ u
(j)
ij

)

for all ij ∈ Sij for all j ∈
{1, . . . , L}. As a result, P of (IB) satisfies all
the constraints in (rIB). �

Next, the semi-infinite probability threshold con-
straint for the joint distribution can be reformu-
lated as the following mathematical optimization
problem for the p-ellipsoidal uncertainty set.

(IE) min
P ,p(.)

∑

(i1,i2,...,iL)∈S

Pi1,i2...,iL Yi1,i2...,iL

s.t. Pi1,i2...,iL =
L
∏

j=1

(

p
(j)
ij

+ ξ
(j)
ij

)

∀(i1, i2, . . . , iL) ∈ S (16)
∑

i∈Sj

ξ
(j)
ij

= 0 ∀j ∈ {1, . . . , L} (17)

∣

∣

∣

∣

∣

∣
Q(j)ξ(j)

∣

∣

∣

∣

∣

∣

2
≤ σj ∀j ∈ {1, . . . , L}, (18)

Similarly, (IE) is a nonlinear and non-convex
optimization problem that is intractable in its
current form. The following theorem yields a
tractable reduced relaxation of (IE).

Theorem 4. Let S = S1 × S2... × SL,

ℓi1,i2...,iℓ =
∏L

j=1

(

p
(j)
ij

− σj/q
(j)
ij

)

and ui1,i2...,iℓ =
∏L

j=1

(

p
(j)
ij

+ σj/q
(j)
ij

)

∀i ∈ Sj ∀j ∈ {1, . . . , L}
then (rIB) is a relaxation of (IE).

Proof. Constraints (17) and (18) imply that the

largest value that ξ
(j)
ij

can get is σj/q
(j)
ij

for all

ij ∈ Sij for all j ∈ {1, . . . , L}; similarly, the small-

est value is −σj/q
(j)
ij

. The remainder of the proof

follows similar to Theorem 3. �

Remark 3. The ambiguity set U of the un-
known true probability vector p for the indepen-
dent uncertainty parameters may also be defined
by first calculating the nominal joint probabilities
of the uncertainty parameter realizations and then
adopting the p-box or p-ellipsoidal ambiguity set
over the nominal joint probability vector; notice
that this shall result in the RCs that are pro-
posed in §2. The extension that is presented in
§3.2 defines the ambiguity sets with respect to the
marginal probability vectors of the individual un-
certainty parameters and propose safe approxima-
tions of (SI) for the resulting complex ambiguity
set of the joint probability vector.

4. Numerical example: knapsack

problem

In this section, we present validity or our ap-
proach using toy sized instances of an ambiguous
chance constrained knapsack problem. We com-
pare optimality and feasibility performances of
the classic and the ambiguous chance constrained
versions of the problem.
We focus on a chance constrained knapsack prob-
lem:

max
x∈{0,1}

n
∑

i=1

vixi

s.t. Prζ∼P

{

ζ :
n
∑

i=1

ζixi ≤ W

}

≥ 1− ǫ,

where vi denotes the value and ζi denotes the
uncertain weight of item i = {1, . . . ,m}, xi is the
decision variable that is 1 if item i is included in
the knapsack or 0 otherwise, and W is the capac-
ity of the knapsack. The uncertainty parameter
ζ follows a discrete probability distribution P:

ζ ∈ {ζ1 . . . ζ|S|}
P(ζ) = p1 . . . p|S|

where the true probability distribution p is un-
known or ambiguous but is assumed to reside in
a p-box (UB) or a p-ellipsoidal (UE) ambiguity
set:

UB =

{

ξ ∈ R
L : p = p0 + ξ,

∑

s∈S

ξs = 0, . . .

(1− γ)p0 ≤ p ≤ (1 + γ)p0

}

,
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and

UE =

{

ξ ∈ R
L : p = p0 + ξ,

∑

s∈S

ξs = 0, . . .

∣

∣

∣

∣p− p0
∣

∣

∣

∣

2
≤ σ

}

.

The p-box uncertainty set is symmetric around
the nominal probability distribution p0 and its
size is determined by the scaling parameter γ ∈
[0, 1]; σ denotes the radius of the p-ellipsoidal un-
certainty set that is again centered at the nominal
data p0.
Notice that the ambiguous chance constrained
knapsack problem with a discrete probability dis-
tribution can be equivalently reformulated as

max
x∈{0,1}

n
∑

i=1

vixi

n
∑

i=1

ζsi xi −W ≤ M(1− ys) ∀s ∈ S

∑

s∈S

psys ≥ 1− ǫ ∀p ∈ UB or E ,

where M = (max{e⊤ζ1, . . . , e⊤ζ|S|} − W ). The
tractable RCs of the knapsack problem can be
derived as in (RCB) and (RCE).

Illustrative example. We solve an instance
of the knapsack problem with ten items (i.e.,
n = 10). Scenarios for the item weights (i.e.,
S = {1, . . . , 10}) are given in Table 2; the real-
ization probabilities are given in the last row of
the table (see, p0). The objective coefficients are
v = [37; 43; 53; 67; 44; 57; 69; 45; 54; 66], the knap-
sack capacity is W = 60, and the probability
threshold is 1− ǫ = 0.75.

Table 2. Uncertainty parameter re-
alizations with probabilities

ζ1 ζ2 ζ3 ζ4 ζ5 ζ6 ζ7 ζ8 ζ9 ζ10

ζ
1

10 4 5 8 9 5 6 6 7 5

ζ
2

9 4 10 4 9 9 7 8 6 9

ζ
3

8 8 9 7 10 7 8 7 9 7

ζ
4

9 7 10 4 10 9 7 4 9 9

ζ
5

6 5 6 8 8 10 5 7 6 5

ζ
6

9 9 6 6 7 5 5 6 5 5

ζ
7

8 10 5 10 7 5 8 8 6 7

ζ
8

4 4 9 4 8 9 9 8 10 6

ζ
9

10 7 8 10 5 10 5 10 10 5

ζ
10

4 5 7 9 8 6 7 9 8 5

p0 0.05 0.025 0.1 0.025 0.15 0.15 0.1 0.2 0.1 0.1

Notice that when p = p0 in the knapsack prob-
lem, we have the classic chance constrained ver-
sion of the problem. The optimal solution and
the objective function value for the classic prob-
lem are given Table 3. The optimal solution for

the chance constrained knapsack problem satis-
fies the constraint with 1−ǫ∗ = 0.775 probability.

Table 3. Optimal solution for the
chance constrained problem

x∗

1
x∗

2
x∗

3
x∗

4
x∗

5
x∗

6
x∗

7
x∗

8
x∗

9
x∗

10
Obj.

1 0 1 1 1 1 1 0 1 1 447

y∗

1
y∗

2
y∗

3
y∗

4
y∗

5
y∗

6
y∗

7
y∗

8
y∗

9
y∗

10
1 − ǫ

0 1 1 0 0 1 1 1 1 1 0.775

Next we solve the ambiguous chance constrained
knapsack problem with respect to the p-box (UB)
and p-ellipsoidal (UE) ambiguity sets when γ =
0.4; respectively. Notice that σ is determined ac-
cording to the tightest ball inside the box region,
i.e., it is less conservative than the box. The op-
timal solutions are given in Table 4.
It is easy to see that optimal objective function
value for the chance constrained problem that
uses the nominal probability vector is greater
than these of the ambiguous chance constrained
version of the problem with respect to p-box and
p-ellipsoidal ambiguity sets. To point out, the
classic chance constraint approach is not immu-
nized against the ambiguity in the probability
distribution and this is why it yields a progres-
sive objective function value. On the other hand,
when the worst-case probability distribution p∗

is realized, the nominal solution cannot satisfy
the given probability threshold 1 − ǫ = 0.75.
More precisely, the LHS value for the probabil-
ity threshold constraint [

∑

s∈S p∗sys ≥ 1 − ǫ] is
0.65 for the p-box and 0.746 for the p-ellipsoidal
uncertainty sets when y is the nominal optimal
solution; compare these values with “

∑

s∈S p∗sys”
column in Table 4.

Table 4. Optimal solutions for the
ambiguous chance constrained prob-
lem

Set x∗ Obj.
p-box (1, 0, 1, 1, 1, 1, 1, 1, 0, 1) 438
p-ellip. (1, 1, 1, 1, 0, 1, 1, 0, 1, 1) 446

y∗
∑

s∈S p∗sys

p-box (1, 1, 1, 1, 0, 1, 1, 1, 1, 1) 0.79
p-ellip. (0, 1, 1, 1, 0, 1, 1, 1, 1, 1) 0.76

As it is anticipated, the classic approach out-
performs the robust approach when the nominal
probability distribution is used and the robust
approach outperforms the classic approach when
the worst-case distribution is used. Neverthe-
less, it may be known that both approaches are
based on unique probability vector realizations,
namely, the nominal and the worst-case, out of
infinitely many possible options in the ambiguity
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set, i.e., technically both data points might never
be realized. This is why, we also test the aver-
age feasibility performances of the nominal and
robust solutions via Monte Carlo sampling. Even
though, the robust approach does not require any
distributional information, we assume in the ex-
periment that probabilities are uniform between
[(1−γi)p

0
i , (1+γi)p

0
i ] for the sampling. Algorithm

1 and Algorithm 2 are used to sample from p-box
and p-ellipsoidal ambiguity sets.

Algorithm 2: p-box sampling algorithm

Inputs: the nominal probability vector p0 ∈ [0, 1]S ,
the scaling vector γ ∈ [0, 1]S , sample size

Output: sample

While # of sampled vectors ≤ sample size

for i = 1 : 1 : |S| − 1

sample pi ∼ Uniform
[

(1− γi)p
0
i , (1 + γi)p

0
i

]

end

calculate p|S| = 1−
∑|S|−1

i=1 pi

If (1− γi)p
0
|S|

≤ p|S| ≤ (1 + γi)p
0
|S|

add p to sample; # of sampled vectors ++

end

end

We sample 1000 probability vectors from p-box
and p-ellipsoidal uncertainty sets and the simula-
tion outcomes are presented in Table 5 & 6. Table
5 reports the average LHS value of the probabil-
ity threshold constraint [

∑1000
i=1

∑

s∈S pisys] when
y is fixed to the solution at hand. It is easy to
see that the optimal solution for the p-box and
the p-ellipsoidal uncertainty sets outperform the
feasibility performance of the nominal solution.
Algorithm 3: p-ellipsoidal sampling algorithm

Inputs: the nominal probability vector p0 ∈ [0, 1]S ,
the radius of the ellipsoid σ ∈ R+, sample size

Output: sample

Initialization: set γi = σ/p0i ∀i ∈ S

While # of sampled vectors ≤ sample size

for i = 1 : 1 : |S| − 1

sample pi ∼ Uniform
[

(1− γi)p
0
i , (1 + γi)p

0
i

]

end

calculate p|S| = 1−
∑|S|−1

i=1 pi

If
∣

∣

∣

∣p− p0
∣

∣

∣

∣

2
≤ σ

add p to sample; # of sampled vectors ++

end

end

As we have pointed out before the p-box uncer-
tainty set is larger than the p-ellipsoidal and this
is why its solution is immunized against uncer-
tainty more than that for the p-ellipsoidal uncer-
tainty set. If we compare the average feasibil-
ity performance of the p-box approach, we also
see that its average performance is better than
that of the p-ellipsoidal approach. It is impor-
tant to point out that all approaches, namely,

p-box, p-ellipsoidal, and nominal, yield (on aver-
age) feasible results that are (on average) far from
being binding to the given probability threshold
1− ǫ = 0.75.

Table 5. Feasibility performance of
solutions

sample solution

sets box ellip nom
p-box 0.85 0.79 0.76
p-ellip 0.85 0.80 0.76

On the other hand, solutions are not feasible for
all of the sampled instances. In Table 6, we re-
port the average performances of the solutions for
the violating instances. The first three columns in
Table 6 denote the number of violating instances
(out of 1000). E.g., the numerical result at “row =
p-box” and “column = #Vio(ellip)” denotes the
number of violated constraints when the solution
is fixed to the optimal solution of the RC with
respect to the p-box uncertainty set, i.e., the op-
timal solution of the ambiguous chance constraint
for the p-box uncertainty is tested when the prob-
ability vectors are sampled from the p-ellipsoidal
uncertainty set. The last three columns report
the average LHS value of the probability thresh-
old constraint for the violating instances.

Table 6. Feasibility performance of
solutions

U #Vio(box) #Vio(ellip) #Vio(nom)
p-box 0 83 283
p-ellip 0 0 25

U Vio(box) Vio(ellip) Vio(nom)
p-box - 0.73 0.72
p-ellip - - 0.74

The numerical results show that the nominal
solution cannot satisfy nearly one third of the
instances when data comes from p-box uncer-
tainty set. Since the ellipsoidal uncertainty set
is less conservative with 83 violations, the fea-
sibility performance of the nominal solution for
the p-ellipsoidal uncertainty is less conservative;
compare the number of violations in the third
column. As it is anticipated, the optimal solu-
tion with respect p-box uncertainty set does not
violate the probability threshold constraint when
data comes from the p-ellipsoidal because p-box
is a superset; and both approaches are robust
with respect to their own ambiguity sets, e.g., the
p-box solution is robust against the p-box ambi-
guity set by definition. The average violation of
the LHS value of the probability constraint for
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the violating instances ranges between %1 to %3;
see the last two columns where p-box solution is
fully robust against the uncertainty in the proba-
bility distribution; p-ellipsoidal approach violates
the constraints for the p-box uncertainty (on av-
erage) with %2; and the nominal solution violates
the constraint for p-box uncertainty with %3 and
for the p-ellipsoidal uncertainty with %1.

Monte Carlo simulation. In the remainder
of this section, we shall adopt a Monte Carlo
simulation study to compare the optimality and
computational performances of the stepwise ellip-
soidal algorithm (SEA) that is proposed in §2.3
with those of the exact reformulation (RCE) and
the randomized algorithm (RA) that is proposed
by [15] for combinations of the instance parame-
ters of the chance constrained knapsack problem.
RA is based on random extraction of N realiza-
tions ({ζ̂1, . . . , ζ̂N}) of the uncertainty parameter
ζ using the known probability distribution of the
parameter, i.e., a discrete probability distribu-
tion in our case. Each extraction coincides with
a discrete constraint and instead of solving the
exact problem, the authors solve the mathemati-
cal optimization problem with N constraints, i.e.,
[f(x, ζ̂i) ≤ 0 ∀i ∈ {1, . . . , N}]. They show that
the optimal solution of the randomized approach
satisfies the following probabilistic guarantee:

Pr{V (x∗) > ǫ} ≤
∑L−1

i=0 Cb(N, i)ǫi(1− ǫ)N−i,

where the LHS of the inequality is associated with
the probability that the chance constraint is vi-
olated for the solution at hand (x∗

N ) when N
samples are drawn for an L-dimensional decision
space, and the RHS coincides with the worst-case
bound for the associated probability, e.g., when
ǫ = 0.2, L = 5 and RHS = 0.01, then N = 54
samples have to be drawn. We refer reader to [15]
for further details on RA; and to [16] for the for-
mal proof on tightness of the given probability
bound.
Data used in the experiment is generated as fol-
lows: 1) we randomly sample the lower (ℓi) and
upper (ui) bounds of the intervals of the item
weights from U[1-10] and U[11-20]; respectively,
i.e., ζi ∈ [ℓi, ui] ∀i ∈ L. 2) Next, we randomly

sample |S| scenarios as vectors {ζ1, ζ2, . . . , ζ|S|}
using the associated intervals. 3) For the sake
of simplicity, we assume that all scenarios are
equally likely, i.e., p0s = 1/|S| for all s ∈ S. 4)
Item values (v) are randomly sampled from U[10-
20] and the bag capacity (W ) is set to %80 of
the total nominal weights of the items. The con-
fidence level [

∑L−1
i=0 Cb(N, i)ǫi(1− ǫ)N−i] of RA is

set to 0.01; the number of samples to be drawn
for ǫ ∈ {0.1, 0.2}. 5) L denotes the number of
items and |S| denotes the number of scenario real-
izations used in discrete probability distribution.
For each L/|S| pair 20 different data sets have
been generated by following the data generation
structure mentioned above. Using the associated
data, the optimality and CPU performances of
RA, SEA (Algorithm 1) and the exact reformu-
lation (RCE) have been compared in Tables 7 &
8.
As we have pointed out above we have generated
20 instances for each L/|S| combination. The
asterisk symbol (∗) denotes that the associated
algorithm solves all instances to optimality for
the given parameter combination or it denotes
the best performing algorithm when the exact
reformulation cannot be solved. The tilde symbol
(∼) denotes that optimality cannot be attained
in 7200 seconds. “Gap” denotes the (average)
optimality gap percentage of an algorithm for the
instances those cannot be solved to optimality
or the (average) optimality gap percentage of an
algorithm with respect to the best performing
algorithm when the exact reformulation cannot
be solved in 7200 seconds; the hash tag symbol
(#) denotes the number of instances (out of 20)
those cannot be solved to optimality (or worse
than the best performing algorithm) by the given
algorithm. Finally, CPU is the total computation
time of a given algorithm in seconds. All ex-
periments are run on a 64-bit Windows machine
equipped with an Intel Quad-Core i7-6700HQ
processor with 16 GB of RAM.

Table 7. Comparison of solution ap-
proaches when ǫ = 0.1

L/|S| Output Exact RA SEA

5/10
Gap (#) ∗ ∗ ∗
CPU 0.10 0.02 0.01

10/20
Gap (#) ∗ %7.6 (18) %1 (1)
CPU 76 0.1 0.02

25/50
Gap (#) - %6 (19) %1 (1)
CPU ∼ 0.4 0.02
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Table 8. Comparison of solution ap-
proaches when ǫ = 0.2

L/|S| Output Exact RA SEA

5/10
Gap (#) ∗ %15 (15) ∗
CPU 0.10 0.2 0.02

10/20
Gap (#) ∗ %12.2 (19) ∗
CPU 22 0.3 0.02

25/50
Gap (#) ∼ %9.8 (20) ∗
CPU ∼ 0.4 0.02

The numerical results in Table 7 & 8 show that
SEA outperforms RA at all instances both in
CPU time and the optimality gap. Improved op-
timality performance of SEA may be an antic-
ipated result since the algorithm systematically
includes the uncertain parameters in the uncer-
tainty set in order to yield the tightest ambi-
guity set and hence a better objective function
value compared with RA that is fully random-
ized without a systematic objective performance
consideration. Improved computational and op-
timality performances of SEA become more sig-
nificant when probability threshold ǫ, and hence
the size of the feasible region, increases; it is easy
to see that when we compare the numerical re-
sults (Gap, CPU) in Tables 7 & 8. Notice that
L/|S|=5/10 instances in Table 7 are kind of re-
dundant since we need to satisfy all uncertainty
realizations (i.e., robust) in this case to satisfy
1 − ǫ = 0.9 probability threshold. Nevertheless,
these are the only instance where we see no signif-
icant difference among all alternative approaches.
According to these numerical results, we can con-
clude that SEA is an efficient approximation algo-
rithm to solve the ambiguous chance constrained
problem for medium to large sized instances. SEA
is almost as good as the exact reformulation (ex-
cept for 1 instance in Table 7 at L/|S| = 10/20
with %1 gap) in optimality performance while
yielding high quality solutions in less than a sec-
ond. Moreover, SEA significantly outperforms
RA in increased dimensions where we cannot
adopt the exact approach (see rows L/|S| = 25/50
in Tables 8 & 9).

5. Conclusion

In this paper, we have proposed robust reformu-
lations of ambiguous chance constraints with dis-
crete probability distributions. We have derived
the tractable robust counterparts of the associ-
ated class of ambiguous chance constraints using
p-box and p-ellipsoidal uncertainty sets that sup-
port the ambiguous family of distributions. Our
approach can be easily applied in practice where
one works with a finite number of scenarios that

follow a discrete probability distribution. The as-
sociated probabilities are ambiguous by nature
because they are forecast or decided by an ex-
pert opinion. Proposed methodology aims to find
a solution that satisfies the given probability re-
quirement of being feasible while maximizing the
utility (or minimizing the cost) and at the same
time taking into account the distributional am-
biguity. The proposed approach can be easily
extended to joint chances constraints, nonlinear
inequalities as well as different data structures
without introducing additional mathematical op-
timization complexity to that of tackling a unique
ambiguous chance constraint with discrete prob-
ability distribution using our method.
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252 İ. Yanıkoğlu / IJOCTA, Vol.9, No.2, pp.236-252 (2019)

problem. SIAM Journal on Optimization,
24(3), 1485–1506.

[38] Hu, Z. & Hong, L.J. (2013). Kullback-Leibler
divergence constrained distributionally ro-
bust optimization. Available at Optimization
Online.

[39] Xie, W. & Ahmed, S. (2018). On determin-
istic reformulations of distributionally robust
joint chance constrained optimization prob-
lems. SIAM Journal on Optimization, 28(2),
1151–1182.

[40] Xie, W., Ahmed, S. & Jiang, R. (2017).
Optimized Bonferroni approximations of dis-
tributionally robust joint chance constraints.
Available at Optimization Online.

[41] Xie, W. (2018). On distributionally robust
chance constrained program with wasserstein
distance. arXiv preprint, arXiv:1806.07418.

[42] Mehrotra, S. & Zhang, H. (2014). Mod-
els and algorithms for distributionally robust
least squares problems. Mathematical Pro-
gramming, 146(1-2), 123–141.
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