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Abstract
The awareness about healthy lifestyles is increasing, opening to personalized intelligent 
health coaching applications. A demand for more than mere suggestions and mechanistic 
interactions has driven attention to nutrition virtual coaching systems (NVC) as a bridge 
between human–machine interaction and recommender, informative, persuasive, and argu-
mentation systems. NVC can rely on data-driven opaque mechanisms. Therefore, it is cru-
cial to enable NVC to explain their doing (i.e., engaging the user in discussions (via argu-
ments) about dietary solutions/alternatives). By doing so, transparency, user acceptance, 
and engagement are expected to be boosted. This study focuses on NVC agents generating 
personalized food recommendations based on user-specific factors such as allergies, eating 
habits, lifestyles, and ingredient preferences. In particular, we propose a user-agent nego-
tiation process entailing run-time feedback mechanisms to react to both recommendations 
and related explanations. Lastly, the study presents the findings obtained by the experiments 
conducted with multi-background participants to evaluate the acceptability and effective-
ness of the proposed system. The results indicate that most participants value the opportu-
nity to provide feedback and receive explanations for recommendations. Additionally, the 
users are fond of receiving information tailored to their needs. Furthermore, our interactive 
recommendation system performed better than the corresponding traditional recommenda-
tion system in terms of effectiveness regarding the number of agreements and rounds.

Keywords  Explainable AI · Recommender systems · Interactive · Nutrition virtual coach

1  Introduction

Approximately 63% of all deaths worldwide are attributed to non-communicable dis-
eases such as cardiovascular diseases, chronic respiratory diseases, and diabetes.1 The 
World Health Organization emphasizes that these diseases can be prevented by address-
ing common risk factors, such as unhealthy nutrition habits and diets. However, personal 
preferences, cultural and religious constraints, and taste heavily affect individuals’ habits. 
Tasty—yet unhealthy components—are increasingly hidden in a wide range of processed 

Extended author information available on the last page of the article

1  https://​www.​who.​int/​news-​room/​fact-​sheets/​detail/​nonco​mmuni​cable-​disea​ses.

http://crossmark.crossref.org/dialog/?doi=10.1007/s10458-023-09634-5&domain=pdf
https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases
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food items. Therefore, society needs guidance on making suitable and sustainable dietary 
choices [8, 12, 44]. To counter the unhealthy trend, food recommender systems—assisting 
individuals in recipe selection have gained popularity [8, 44]. The need for these systems 
can be attributed to increased globalization, leading to greater availability and variety of 
food, as well as the prevalence of ultra-processed food, contributing to metabolic and over-
weight issues [18]. Although numerous recipes are freely accessible (i.e., via many online 
collectors), determining the “best” recipe for a specific individual in a given situation can 
be remarkably complex. Indeed, it involves managing a wide range of possibilities while 
considering bounding variables such as allergens, nutritional values, personal require-
ments, calorie intake, historical data, and momentary preferences. Consequently, there is a 
need for a personalized support system. Nutrition virtual coaches (NVCs) are systems that 
aim to recommend recipes that align with users’ specific needs and preferences while con-
sidering their health and long-term needs [43].

NVCs cater to various goals, including muscle gain, weight loss, and management of 
nutrition-related diseases such as obesity.2 The underlying objective is to provide users 
with constructive “educational” support, gradually reducing their reliance on NVCs. Exist-
ing solutions, both from research and industry, have attempted to address these goals. 
However, they often lack transparency and clarity, leading to a lack of trust and effective-
ness  [8]. To enhance transparency and, henceforth, effectiveness, Explainable AI (XAI) 
techniques have been employed in various domains, such as transportation, fleet manage-
ment, and neurosciences [14, 33]. Moreover, some studies have proposed semantic mod-
els [34] and incorporated negotiation techniques to guide users towards desired quality of 
life goals [28].. While these efforts have contributed to the field of recommender systems, 
to the best of our knowledge, there is currently no existing system that fully qualifies as 
an “explainable” Nutrition Virtual Coach (NVC) which is effectively an agent that pro-
vide recommendations, explain them to the user, and engage in interactive discussions to 
foster desired behavioral changes. Engaging the user in interactive (back-and-forth) com-
munication is crucial as it allows the user to dive into the concept and build a more solid 
and backed-up knowledge/awareness that undoubtedly boosts information retention. Such 
mechanisms can assume a rather simplistic—yet effective—form of feedback [27]. Build-
ing on that, verifying/fixing misunderstandings and elaborating on follow-up questions 
becomes more feasible (from a designer/developer perspective) and easy to handle (from a 
user perspective).

This work builds upon the protocol described in [6], and it extends it by introducing a 
more sophisticated/dynamic explanation generation strategy consisting of decision trees in 
the form of Item and User based trees to generate explanations retroactively to recommen-
dation selection. Moreover, we have improved the user interface, leveraging the feedback 
coming from the user study conducted in [6]. Finally, we have extended the comparative 
evaluation of the proposed system using a simple health score calculation, with a multi-cri-
teria additive utility function for recipe selection and an Web Ontology Language (OWL) 
based ontology database to classify users and recipe ingredients.

Our main assumption is that people can have different preferences (i.e., taste over 
healthiness or vice-versa). However, recommender systems, in prioritizing recommenda-
tions aligned with predefined goals, may sometimes overlook specific user preferences, 
leading to “conflicts” between user desires and system objectives. For instance, a user 

2  https://​www.​cdc.​gov/​chron​icdis​ease/​resou​rces/​publi​catio​ns/​facts​heets/​nutri​tion.​html.

https://www.cdc.gov/chronicdisease/resources/publications/factsheets/nutrition.html
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seeking tasty yet conversely unhealthy food may clash with a system focused on promot-
ing a healthy lifestyle. The system developers in that case must delicately balance meeting 
the system goals while delivering a personalized experience. Therefore, to address these 
conflicts, we model the resolution as a negotiation in a dialogical setting where the sys-
tem concedes by making recommendations more fitting to the user profile than its own 
goals (healthiness). We classified the participants according to their priorities (obtained via 
a pre-experiment survey). Moreover, we assessed the protocol with individuals character-
ized by various backgrounds in online experimental settings consisting of a pre-experiment 
survey, two sessions (static vs. interactive), and a concluding post-experiment survey to 
question the participants about their experience with the different settings.

The rest of this paper is organized as follows. Section 2 presents the related work. Sec-
tion 3 presents the explainable argumentation negotiation module for NVC. Section 4 eval-
uates and discusses the obtained results. Finally, Sect. 5 concludes the paper and outlines 
future works.

2 � Related work

This section briefly overviews the literature on food recommender systems, focus-
ing on conventional systems and their evolution to embrace explainable and interactive 
recommendations.

2.1 � Conventional food recommendation

In 1986, Hammond et al.  [21] developed one of the earliest food recommender systems. 
It is named CHEF and leverages case-based planning to replace or improve food items 
within recipes. It requires a substantial initial knowledge base, extensive pre-processing, 
and the creation of (backup) plans for each recipe. More recently, in 2010, Freyne and 
Berkovsky  [16] implemented recommender algorithms, such as collaborative filtering 
(CF) and content-based (CB) approaches, to recommend recipes. The study concluded that 
incorporating ingredient weights within CF and CB improved prediction accuracy. In turn, 
Ge et al.  [17] introduced the concept of personalization in food recommendations, prior-
itizing health over taste. Chi et al. [11] focused on recommending food for individuals with 
chronic conditions (i.e., kidney diseases) using an Ontology Web Language (OWL) ontol-
ogy integrating health-relevant aspects. Chen et al. [10] proposed a generalized framework 
for healthy recommendations, explicitly targeting the modification of unhealthy recipes. 
The authors introduced a deep learning-based method called IP-embedding to match reci-
pes with desired ingredients, creating a pseudo recipe that meets the requirements and then 
matching it with healthy ingredients and real recipes using the mean squared error (MSE) 
metric. Similarly, Teng et al. [39] developed a point-wise comparison metric to understand 
how to transform recipes into more healthier ones, using ingredient substitutions for health-
ier alternatives. Elsweiler et al. [1] addressed ingredient and food substitution, metricizing 
nutritional values to encourage users to prefer healthier options. Overall, food recommen-
dation approaches often rely on factors such as recipe content (e.g., ingredients) [13, 15, 
40], user behavior history (e.g., eating history) [32, 46], and dietary preferences [32, 45].
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2.2 � Towards explainable recommendation systems

Conventional food recommendation approaches are mostly “one-shot”, offering the user 
minimal (if any) possibilities to interact. However, with the advent of explainable tech-
nologies, that aim for predictors and classifiers that show transparency, understandabil-
ity, and inspectability in order to boost trust  [4], recommender systems are expected 
to provide explanations for their recommendations  [13, 15, 20, 46], allowing users to 
justify, control, and discover new aspects of the suggested outcomes [32, 45, 47]. Along 
this line, Padhiar et al. [34] proposed a food recommender system that generates expla-
nations based on a knowledge-based ontology. However, the explanatory system only 
attempts to explain a given recommendation via different methods, with no dialogue 
option: no way for the user to reply or interact. Samih et al.  [36] further explored this 
concept by developing a knowledge-based explainable recommender system that makes 
use of a probabilistic soft-logic framework to generate explanations. Lawo et  al.  [28] 
aimed to enhance the interaction between users and virtual assistants by incorporating a 
cluster of consumers with ethical and social priorities into the recommendation process 
and considering their feedback and preferences.

Finally, recommendation systems have been employed in the nutrition domain for 
some time, with objectives ranging from promoting health, sustainability, and finding 
combinations of ingredients that taste well. Recent studies have emphasized the impor-
tance of incorporating explanations into recommendations to enhance transparency, 
trust, and acceptability. Although explanations in food recommender systems are still 
not fully widespread, some approaches (or combinations of them) are gaining attention. 
In the following section, we survey existing explanation mechanisms, which could be 
adopted by food recommendation systems.

2.3 � Post‑hoc explanation generation mechanisms

In recent years, there has been ample research within the Machine Learning litera-
ture, focused on developing techniques for post-hoc explanation generation in various 
domains. These techniques are designed to explain the predictions made by complex 
black-box models. They operate “post-hoc,” meaning they generate explanations after 
the main model has made its predictions, without requiring modifications to the under-
lying architecture or training process. The goal is to improve transparency and inter-
pretability by providing human-understandable justifications for the model’s decisions. 
Post-Hoc Explanation Generation models leverage techniques such as feature impor-
tance analysis [35], rule-based reasoning [50], gradient-based attribution [3], or surro-
gate models [51] to generate meaningful explanations that can shed light on the factors 
influencing the model’s predictions. These explanations help stakeholders gain insight 
into how the given model arrives at its decisions, builds trust, and facilitates error analy-
sis, making them valuable tools for practical applications and model understanding [9].

We can distinguish various strategies to generate explanations. Note that these 
classes are not mutually exclusive but are often overlapping. So a user-centred explana-
tion can also be content-based. The most suitable forms of explanations presented in the 
literature to be generated for food recommendations, can be classified as follows:
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•	 User-centered explanation: The generated explanations are meant to assist users in 
achieving their goals. Sovrana and Vitali   [38] emphasize that users are satisfied 
with the explanations if they are guided in answering the questions about the process 
of fulfilling their goals. An explanation such as “we recommend you the following 
food recipe to lose weight since it has low fat and rich fiber” could be considered 
an instance of this explanation type. It implicitly answers what is necessary to lose 
weight, which aligns with the hypothetical user’s goals.

•	 Knowledge-based explanations: These explanations are generated by inferring some 
formal rules and facts in the knowledge base. For instance, a recommendation engine 
can offer a camera with less memory and resolution by referring to the rule that states 
“Less memory ∧ lower resolution → cheap” [41]. Such rules need to be given to the 
system, and they can be derived from a decision tree modeling the system’s or user’s 
behavior. In other words, decision trees could be utilized to learn why the underlying 
decision is made from the data, and the rules extracted from the constructed decision 
tree can give insights on how the system works to the user as an explanation [19].

•	 Example-based explanations: Based on historical data or previous experiences, a sys-
tem can generate some explanations by generalizing past behaviors/patterns for a given 
new situation  [48]. For example, assume that a food recipe consisting of sugar-free 
ingredients was recommended to a diabetic person by a recommender system that rec-
ommends food to ill people, and the results were satisfactory. If a new diabetic person 
joins the system, it might generate the following explanation alongside its recommen-
dation “Diabetic people are often satisfied with this food recipe with sugar-free ingredi-
ents.”.

•	 Content-based explanations: Inspired by the content-based recommendation approach, 
the system can analyze the features of the items appreciated by a particular user and 
extract the preferred values for those features to explain the recommended item to that 
user [41]. For instance, the system can generate an explanation such as “This food rec-
ipe contains mozzarella, so you might like it.” if the user previously liked the food reci-
pes that contain mozzarella specifically.

•	 Contextual explanations: External factors affecting the decision could be used to gener-
ate such explanations. For instance, “Today fish is fresh. It has just arrived. Therefore, I 
recommend creamy salmon pasta.” [34].

•	 Contrastive explanations: A recent review by  [31] provides empirical evidence sup-
porting the practical utility of everyday contrastive explanations, “comparing a cer-
tain phenomenon with a hypothetical one” [48]. While asking about a certain choice, 
someone may think of alternatives and wonder why those were not recommended with 
respect to the given one. Contrastive explanations focus on the difference between the 
current choice and alternative ones. For instance, “We were going to recommend you a 
healthier option, which is Turkish Salad instead of American Salad that contains a sub-
stantially higher amount of fats.”.

•	 Counterfactual explanations: Like contrastive explanations, counterfactual explana-
tions focus on the differences between alternative options. However, these explanations 
rely on hypothetical factors instead of factual factors [34]. For instance, “If you did not 
have an allergy to seafood, I would recommend you a salmon salad. However, now I 
have to recommend you a turkey salad.”.

The first three types in the list above, namely user-centred, knowledge-based and example-
based, differ in the type of argument to convince the user. The first relates to what the user 
previously stated as preference or goal, whereas the second refers to external knowledge, 
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in our case from a food expert. The third refers to an analogy with what other people in a 
peer group have chosen. By contrast, the fourth type, content-based explanations, is based 
on features derived from the recommendation itself. One can match those features with 
user preferences, external knowledge, or examples from peers, to make an argument, as 
mentioned before.

The fifth type picks contextual factors to focus the argument upon. In our case, the time 
of day determines the type of meal (breakfast, lunch, dinner). In that sense, most of our 
explanations are implicitly contextual. The final two types of explanations focus on the 
fact that explanation should help people make a choice among two or more alternatives. 
A contrastive explanation signals the differences between existing alternatives, whereas a 
counterfactual explanation signals the differences between the given selection criteria and 
other potential, but non-actual, selection criteria. In implementation, we have to make a 
combination of explanation generation strategies, and use those arguments that are most 
convincing in a given situation. For example, if a knowledge-based explanation fails to 
convince the user, an explanation based on examples from the same group of users, may 
work better. There are also interesting cultural differences. A user-based explanation may 
work better in an individualistic culture, for example. The proposed combination of strate-
gies targeted to the food domain is novel, even if the component strategies (user-centered; 
content-based) have been used before.

3 � Proposed approach

Our earlier study presented in [6] proposes a design of an interaction protocol for explain-
able NVC. In particular, it provides recommendations for recipes seeking to balance the 
long-term user’s diet while matching their immediate preferences. The approach presented 
in this study relies on the protocol presented in [6] to engage a dialogue between the user 
and the system. Recall that our previously developed explanation system was “static” 
with only nutritional factors determining the explanations. Following the feedback we 
acquired from previous experiments, we improved the explanation generation strategy in 
a more dynamic manner to enhance the dialogue between the user and agent. The proto-
col (see Fig.  1) is characterized by the user expressing their preferences and constraints 

Fig. 1   FIPA description of the 
negotiation protocol where C 
corresponds to user constrains, R 
is a recipe recommended by the 
agent and � is an explanation that 
comes with the recipe
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to the NVC, which in turn replies by recommending an appropriate recipe, along with its 
explanation.

In the context of food recommendation, the user first reveals their constraints (C), which 
may consist of the ingredients the user may be allergic (e.g., milk, peanuts) to; the (dis)
liked ingredients (e.g., specific meat/vegetables); and the desired type of cuisine (e.g., 
Middle Eastern, Italian, French). After receiving the user’s constraints, the agent recom-
mends a recipe (R) along with its explanation ( � ). The user can accept R, leave without an 
agreement, criticize R, � , or both. When the user makes a critique, the agent can revise its 
recommendation/explanation, generating ( R′ ), ( �′ ), or both. This interaction continues in a 
turn-taking fashion until reaching a termination condition (i.e., Accept or Leave w/o Rec-
ommendation) or the time deadline is reached.

In our current implementation, a user can criticize the given recommendation by refer-
ring to pre-structured critiques as follows, where Y denotes one of the ingredients chosen 
by the user. (1) I ate Y recently, (2) I’m allergic to Y, (3) I don’t like Y, and (4) I want to give 
custom feedback. Similarly, the user can criticize the explanations communicated along-
side the recommendations with the pre-defined statements such as (1) The explanation is 
not convincing, (2) The explanation does not fit my case, (3) The explanation is incom-
plete, (4) The explanation is not clear enough, and (5) I disagree with the explanation.

In the following section, we look into to the ontology database that the recommendation 
engine takes advantage of while calculating the recommended recipes.

3.1 � Ontology structure

The system incorporates an OWL-based Ontology database that includes ontological con-
cepts to represent users and food ingredients. The User concept characterizes the individu-
als and their eating habits, including any allergy, religious, and lifestyle restrictions. The 
food concept is characterized by recipes and ingredients that are grouped in classes (e.g., 
cow-hearts, cherry tomatoes, etc. are grouped under the category of Tomatoes). A compre-
hensive view from Food concept in the Protege is shown in Fig. 2.

We establish the object property of doesNotEat to identify which food ingredients the 
user would/should avoid as seen in Fig. 3. The limitations, such as the prohibition of pork 
for Muslims, are represented by linking object properties (depicted as diamonds) to both 
the “User” and “Food” concepts. The system verifies whether a particular user class would/
could consume a given ingredient class by the doesNotEat relation between users and food 
ingredients. We utilized a compact and localized recipe dataset  [2] to build the ontology 
instances by fitting the ingredients into the respective concept structure manually. We 
annotated the recipe ingredients by the classes of ingredients within the ontology. A final 
filter on recipes with incomplete information leaves 1.3K recipes to recommend.

3.2 � The baseline recommendation strategy

In this section, we explain the main recommendation strategy of the food recommender 
system under the following outline. Section 3.2.1 explains the initial filtering and scoring 
of the food recipes under various modules. Then, Sect. 3.2.2 elaborates the utility function 
used in determining which recipes to recommend from a healthiness perspective. Finally, 
3.2.3 outlines the calculation of the user satisfaction score used in the utility estimation of 
the recipes.
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3.2.1 � Filtering and scoring recipes

To analyze the applicability of the designed protocol, we have developed a basic recom-
mendation strategy relying on filtering and scoring the recipes concerning the user’s con-
straints and healthiness (see Algorithm 1). First, the NVC agent filters the recipes accord-
ing to the user’s eating habits/constraints via ontology reasoning on what (classes of) 
ingredients the user would not consume (Lines 1–3). Assuming that the user is vegan, the 
NVC agent first filters the recipes containing animal-related products. Then, if the same 
user specifies that they do not like “zucchini”, the NVC agent removes the recipes contain-
ing zucchini from the remaining candidate list, Ru . In turn, the utilities of the remaining 
candidate are calculated by considering both healthiness and their alignment with the user 

Fig. 2   Protege view of food class

Fig. 3   Broad overview of the ontological structure for food concept
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preferences. Then, the recipes are sorted according to the calculated utilities (Lines 4–5).3 
The recipe with the highest utility is taken as a candidate recipe, and the system retroac-
tively generates an explanation in line with the recipe’s properties (Lines 6–7). This candi-
date recipe and its corresponding explanation are given to the user.

When the NVC agent receives feedback from the user regarding the recipe, Fr , it fil-
ters the candidate recipes according to the updated constraints given by the feedback and 
selects the highest-ranked recipe similarly (Lines 10–15). When the NVC agent receives 
feedback from the user regarding the explanation, F

�
 , it simply generates a new explanation 

with the underlying recipe (Lines 16–18).

Algorithm 1   AgentDecisionFunction

3  The details of the utility calculation are explained below.
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3.2.2 � Utility estimation

To select the suitable recipe, this study relies on multi-criteria decision-making [25]. Multi-
criteria decision analysis allows decisions among multiple alternatives evaluated by several 
conflicting criteria  [49]. The adopted multi-criteria decision analysis is done by ranking 
recipes through a multi-criteria function. The multi-criteria function gives each recipe a 
score in the dataset. One of the main advantages of using a mathematical function is the 
transparency of the function and its outcomes. This feature is well suited for our proposed 
NVC due to the explainability of the generated behavior.

The overall utility of the recipes, based on the multi-criteria, is computed by consider-
ing three criteria: Active Metabolic Rate (AMR) score, nutrition value score, and users’ 
Satisfaction score. The final score of the recipes is the weighted sum of the score provided 
by each module as presented by Eq. 1 where wa,wn,wu denote the weights of each AMR 
score, nutrition value score, and users’ satisfaction score, respectively. Note that each score 
is normalized to ensure that the overall score is ranged within [0,1].

The nutrient-based score is calculated according to the nutritional information of the reci-
pes, such as proteins, lipids, carbohydrates, cholesterol, sodium, and saturated fats. These 
nutrients have respective recommended amounts for a healthy life  [42]. In this work, we 
take into account the nutrition intake limits specified by the WHO organization.4 Accord-
ingly, the nutrition-based score is calculated as seen in Eq. 2, where each nutrition score is 
calculated according to Eq. 3. We assume that consuming less than each nutrient’s mini-
mum amount ( minn ) is better than its maximum amount ( maxn ). By following this heuris-
tic, the individual score of each nutrient is calculated.

(1)recipeScore = wn ∗ nutrientsScore + wa ∗ amrScore + wu ∗ UsersScore

(2)
nutrientScore(recipe) = score(pro) + score(lip) + score(cb)+

score(ch) + score(sod) + score(sat)

(3)score(n) =

⎧
⎪
⎨
⎪
⎩

5 if n ∈ [minn,maxn]

3 if n < minn
1 else

Table 1   Daily recommended 
kilocalories (kcal) intake to 
maintain weight [42]

Activity level Daily calories

Too little exercise calories = BMR ∗ 1.2

Light exercise calories = BMR ∗ 1.375

Moderate exercise calories = BMR ∗ 1.55

Strong exercise calories = BMR ∗ 1.725

Very strong exercise calories = BMR ∗ 1.9

4  https://​www.​who.​int/​news-​room/​fact-​sheets/​detail/​healt​hy-​diet, http://​www.​mydai​lyint​ake.​net/​daily-​
intake-​levels/

https://www.who.int/news-room/fact-sheets/detail/healthy-diet
http://www.mydailyintake.net/daily-intake-levels/
http://www.mydailyintake.net/daily-intake-levels/


Autonomous Agents and Multi-Agent Systems            (2024) 38:5 	

1 3

Page 11 of 26      5 

AMR is the number of calories a person must consume daily depending on height, sex, 
age, weight, and activity level. Such preliminary information is taken during the registra-
tion of the users. The value of AMR is based on the value of Basal Metabolic Rate (BMR), 
the number of calories required to keep a body functioning at rest, the person’s activity 
level, and the person’s desire to maintain or reduce his current weight. Table 1 presents the 
values to keep the current weight. To compute the AMR score based on the minimum and 
maximum amount of calories required for a given user available in literature [42], we rely 
on the same assumption of Eq. 3 that is consuming fewer calories than required ( score = 3 
) is better than consuming more calories than required ( score = 1 ). In addition, when the 
amount of calories computed is between the minimum and maximum amount of calories, 
the score is set to 5.

Conventionally, the most used formula to compute BMR is the Harris equation  [22] 
with Eq. 4 and 5, for men and women, respectively. The authors estimated the constants of 
Eq. 4 and 5 by several statistical experiments [22].

3.2.3 � User satisfaction score

The user satisfaction score is calculated by considering the recipe’s popularity among all 
users and the current user’s preferences equally. For the recipe’s popularity, we use the rat-
ings the other users gave between [1, 5]. These values are normalized to [0, 1]. Meanwhile, 
regarding the user’s preferences, we check how many ingredient classes are considered to 
be liked by the user. Here, to determine whether an ingredient is liked or not, we can use 
explicit feedback from the user as well as rely on user profiling to predict whether the given 
ingredient is likely to be preferred to be consumed. Here, we use Jaccard Similarity [5] to 
estimate individual user satisfaction (the rate of the preferred ingredients over the number 
of all the ingredients of a given recipe).

Let us assume the user-submitted his preference for some ingredients (e.g., ingredients; 
i1 , i2 , i3 ) and we have a recipe such that R = i1, i2, i5, i6 (where i5 and i6 are ingredients the 
user has no preference for). Each ingredient that exists with the liked constraint is consid-
ered to be 1 and 0 otherwise. The mean of this operation is 0.5, which is effectively the score 
of R for this user. For all the recipes, the scores are then max-normalized to place the values 
between [0, 1], resulting in a relative level of importance for the given recipe. For instance, 
let us assume that the system knows that the user likes the ingredients i1 , i2 , and i3 and calcu-
late the score of a recipe consisting of the following ingredients:i1, i2, i5, i6 . The individual 
user satisfaction would be 2/4, according to Jaccard similarity. If the overall user rating of 
that recipe is equal to 4 out of 5, then the overall score would be equal to 0.65 ((0.5+0.8)/2).

3.3 � Post‑hoc explanation generation strategies

This study proposes a Post-Hoc explanation generation technique to improve the 
transparency and the sociability of the food recommender system to nudge the users 
to consume healthier food. Section  3.3.1 elaborates on our use of decision trees to 
explain given food recommendations and Sect.  3.3.2 explains the contrastive food 

(4)BMR =10 ∗ weight + 6.25 ∗ height − 5 ∗ age + 5

(5)BMR =10 ∗ weight + 6.25 ∗ height − 5 ∗ age + 161
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recommendations, where we offer an alternative and explain the differences between. 
Finally, Sect. 3.3.3 explains how all these approaches are combined.

3.3.1 � Item and user based explanations

Decision trees are often used for decision support systems because they are simple and 
intuitive models that can be easily understood and visualized. They can explain the rea-
soning behind AI predictions or decisions in a more straightforward form than an other-
wise black-box model [4]. In order to discover the important features significantly influ-
encing users’ decisions (e.g. carbohydrates, protein, etc.), a decision tree is constructed 
from a labelled dataset (see Line 1 in Algorithm 2). When we employ the user-based 
explanation generation method, the decision tree is constructed from historical data in 
which recipes are labelled with all users’ decisions (i.e., accept or reject). Conversely, 
the item-based explanation generation approach utilizes the decision tree constructed 
from a set of recipes labelled according to the current user’s constraints and feedback. 
For that tree, filtered and low-scoring recipes are negatively labelled (-1), recipes that 
aligned with the user’s constraints are positively labelled (+1) and the rest is labeled 
neutrally (0). After sorting features with respect to their importance (Line 2), we choose 
three of them to generate an explanation for the given recipe (Lines 3–4 in Algorithm 2).

Algorithm 2   Item-Based/User-Based Explanation Generation

Figure 4 illustrates a sample item-based tree from one of the live experiment partici-
pants’ data. For this participant, one could observe that the protein is the most important 
decision factor for the constructed tree, as it is also visible on Fig. 5 as well.

3.3.2 � Contrastive explanations

Additionally, we generate contrastive explanations as outlined in Algorithm  3. First, we 
select a recipe that is similar to the recommended recipe but it’s recipeScore is less than the 
recommended one. To do so, we utilize a pool of filtered (i.e., eliminated from the recom-
mendation pool due to the user constraints/preferences) and/or low-scoring (i.e., not healthy 
or not tasty for the given user) recipes. We employ the Jaccard Similarity metric  [26] to 
determine the recipe similarity based on their ingredients. From this candidate set of recipes, 
we choose the one whose similarity with the current recommendation is maximum (Line 1). 
Then, we compare features of the chosen counter recipe with those of the recommended 
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recipe one by one. If the feature of the chosen recipe has a lower score for healthiness or user 
satisfaction, we added them into negative feature set, �− , (Lines 2–4); otherwise, inserted 
into positive feature set, �+ , (Lines 5–7). Those features will be used to build a contrastive 
explanation sentence highlighting the positive side of the recommended recipe while send-
ing away the contrastive recipe by emphasizing its negative sides.

Fig. 4   Sample tree for item-based explanations where “protein” is the most informative feature regarding 
the information gain

Fig. 5   Corresponding feature 
importances for the Fig. 4
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Algorithm 3    Contrastive explanation generation

3.3.3 � Grammar structure and visual components

From the features acquired by the methods explained in the previous sections, we gen-
erate a sentence using the pre-defined grammar-based structure. The structures are 
composed of two variants: one for the user / item-based explanations is shown in Fig. 6 
and the other one for contrastive explanation in Fig.  7. The phrase repository of the 

Fig. 6   Grammar structure of the item/user based explanations

Fig. 7   Grammar structure of the contrastive explanations
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system consists a set of phrases for each decision factor (e.g., for protein: “...provides 
sufficient protein...”), and other types of phrases such as subject and noun (e.g., “...this 
recipe...”). The user/item-based explanations are alluring sentences about each positive 
feature. They are intended to be brief and pithy, whereas contrastive explanations aim 
to create a comparative explanation with a worse alternative (which can be longer).

Figure  8 shows the novel interface developed to display these explanations. We 
added visual aspects of explainable recommendations given the success of “graphics” 
in explaining recommendations [30]. The health-oriented explanations are shown in a 
green box. Contrastive explanations are outlined in yellow. Additionally, we present 
nutritional factors related to food to the user.

4 � Evaluation

To evaluate the performance of the proposed negotiation framework equipped with 
enhanced explanations, we conducted tests via a web-based interface for food rec-
ommendations. The experimental setup and participants are presented in Sects.  4.1 
and 4.2, respectively. Consecutively, Sect. 4.3 reports and discusses the experimental 
results elaborately.

Fig. 8   A sample of the food recommendation interface with explanations
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4.1 � Experimental setup

To assess the acceptability and effectiveness of the proposed negotiation-based recom-
mendation framework, we asked participants to experience two variants of food rec-
ommender systems: (i) traditional recommender where the the system provides solely 
a recommendation (picture and recipe) without any explanation, leaving the user to 
accept it or ask for a new recommendation, and (ii) interactive recommender, where 
the original explanation-based negotiation approach is adjusted to an interactive setting, 
providing explanations for the recommendations and allowing users to give feedback 
(i.e., approvals and critiques of the recipe and/or explanations). It is worth noticing 
that we revised the Web participant interfaces in both conditions based on the feed-
back received in the earlier study presented in [6]. We improved how the food recipes 
and their supportive explanations are displayed to communicate the explanations more 
effectively and diminish the effect of factors irrelevant to the quality of explanations, 
such as pictures. Nutritional information and main ingredients are shown directly along-
side several types of explanations. Conversely, as visible in Fig. 9, a picture of the food 
as well as the details of the recipes are not directly displayed, but available only via an 
additional click.

We follow the following steps in our experiments5. Before conducting the experiments, 
every participant completed a pre-survey and registration form to provide information 
about their gender, age, height, weight, level of physical activity, dietary preferences, and 
any allergies they might have. This information concurs to estimate the healthiness score 
of recipes recommended to the participant (see Sect.  3.2). To reduce the learning effect 
among the sessions, the participants were split into two “groups”, inverting the starting set-
tings order. A three-minute break was given between the two sessions. Initially, we sched-
uled a longer break. However, in our pilot experiment, we received negative feedback about 
the too-long waiting interval.

Fig. 9   traditional and interactive recommendation sessions

5  We selected three explanations for this study. Since it’s commonly considered the maximum number of 
items to show to a user without overwhelming them with too much information [37]
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Following the completion of the experiment, the participants are asked to fill in a ques-
tionnaire that primarily comprises 5-point Likert scale questions to assess their experiences 
in both sessions (one questionnaire per session). The questionnaire follows a within-subject 
design  [29] to gather participants’ insights regarding the system’s success. To facilitate 
recalling their experiences and differentiate the sessions, a picture (screen capture) of the 
given system’s setting is displayed at the beginning of the questionnaire page (see Fig. 10). 
Finally, additional 5-point Likert scale questions were asked to the participants about their 
perceptions of the received explanations during the Interactive system.

4.2 � Participants

In total, there were 54 participants (19 female, 35 male) with diverse backgrounds and age 
groups took part in the test. The mean age of the attendees is 26.31 years old (with a mini-
mum of 19 and a max of 58 years old). The participants were requested to order the impor-
tance of five criteria, relative to a given food recommendation: “Nutritional factors”, “Past 
experience with taste”, “How it looks”, “Price of the ingredients”, and “Cooking style”. 
Figure 11 shows the histogram analysis of the questionnaire. The participants ranked these 
factors on a scale of 1 to 5, with 1 being the most important factor. One could observe 
that the majority of the participants (i.e., 69 % of the participants) ranked past experience 
with the taste of such food to be the most crucial factor in deciding their food recipes to 
cook, whereas 21% of the participants marked nutritional factors to be the most important. 

Fig. 10   Traditional and interactive recommendation sessions questions
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Conversely, 39% of the participants marked cooking style as the least important factor, 
whereas the food’s appearance was rated the least important by 26% of the participants.

4.3 � Experimental results

The success of the self-explanatory systems is usually measured under two categories 
of metrics; subjective and objective metrics [23, 24, 48]. Objective metrics are metrics 
derived from the participant actions within the experimental setup, such as success rate 
(i.e., percentage of sessions ending with an agreement), number of rounds per session, 
healthiness level of the accepted food recipe, and annotator analysis of possible mis-
understandings and feedback given during the Interactive session. Subjective metrics 
denote the participant scores for the post-experiment questionnaire (see Fig. 15 below). 
The subjective evaluation questions are about perceived effectiveness, level of detail, 
user satisfaction, understandability, informativeness, and convenience, meaning that 
the explanations are appropriate relative to the stated user preferences and constraints. 
In addition, we asked about the general idea of receiving explanations in addition to 
recommendations.

We first analyzed the number of sessions that ended successfully. Out of 54 sessions, 
only two traditional and one Interactive session ended without any agreements. It is 
worth noting that the participant who failed to find agreement with the Interactive sys-
tem also couldn’t find one with the traditional system.

Fig. 12   Total number of rounds per participant, for each interaction type

Fig. 11   Histogram analysis of the 
pre-survey questionnaire
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Moreover, participants reached an agreement in the third round on average when 
they engaged in the Interactive session (i.e., average=3.1 standard deviation= 3.5). In 
contrast, they accepted the given offer in the forth round on average for the traditional 
session (i.e., average=3.6 standard deviation= 3.9). Total number of rounds per each 
participant in each session can be seen in Fig. 12 where the red and blue bars denote 
the total number of rounds for the traditional and Interactive sessions, respectively. 
Compared to traditional recommender session, 18 participants had more interaction in 
the Interactive session, whereas 22 participants required more rounds to find an agree-
ment in the traditional sessions. Another 14 participants finished the interaction in the 
same number of rounds. The results are not normally distributed according to Kolmogo-
rov–Smirnov test of Normality ( p =< 0.001 ), therefore we applied the corresponding 
non-parametric Wilcoxon Signed-Rank Test ( p = 0.347 ). Ultimately, we can infer that 
the interactive recommender systems do not necessarily take more rounds to reach an 
agreement, as might be expected.

For the Interactive session, 19 participants accepted recipes of—what we classified 
according to Eq. 3, the recipes that are labeled “5” as—highly healthy foods; 29 par-
ticipants preferred healthy foods, and six accepted unhealthy food recipes. For the tra-
ditional session, on the other hand, the participants accepted 25 highly healthy options 
and 22 healthy options; in contrast, seven participants went for unhealthy options. These 
results are illustrated in Fig. 13. That shows that the Interactive and traditional sessions 
are similarly effective in meeting the objective of recommending healthy foods. When 
the Chi-square statistical test was applied, we observed that there was no statistically 
significant difference between the distributions ( p = 0.40 ). Recall that the recommenda-
tion strategy itself is the same in both sessions.

The aforementioned results concerning the total number of rounds per session indi-
cate that 18 participants ended the session in the traditional session earlier than the 
Interactive one. It is possible that they enjoyed exploring the system more in the Interac-
tive system. Since the recommendation strategy employs a time-based concession strat-
egy, the longer it endures, it may offer less healthy food relative to its previous offers. 
As a result, traditional sessions may end up with healthier food recipes compared to the 
Interactive system in some cases. On the other hand, there are less unhealthy food reci-
pes agreed by the participants in the Interactive session.

Out of 54 participants, the system received the following evaluative feedback for 
Interactive sessions:

•	 “The explanation doesn’t fit my case”, from 4 participants,
•	 “The explanation is not convincing”, from 4 participants,

Fig. 13   Percentage of healthiness 
level of the agreement
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•	 “The explanation is not clear enough”, from 2 participants,
•	 “The explanation is incomplete”, from 1 participants,
•	 “I disagree with the explanation”, from 1 participants.

Additionally to our given feedback options, which were all negative, participants utilized 
the custom feedback option to compliment the explanations: “The explanation is accept-
able” or “The explanations are enough for me”.

Furthermore, we analyzed the users’ responses to the post-test survey to examine how 
they perceived the traditional and Interactive recommendation system. Since each partici-
pant experienced both sessions and the questions are the same for both, we performed a 
within-analysis statistical comparison test. The data is not normally distributed which is 
one of the main assumptions made by the pairwise T-test. Thus, we apply the correspond-
ing non-parametric test called the Wilcoxon sign rank test  [29]. For all tests, the Confi-
dence Interval (CI) is set to 0.95, � = 1 − CI = 0.05.

Figure 14 shows the box plot of the comparative questionnaire between the traditional 
(R) and the Interactive (I) session, respectively. The orange lines represent the median, the 
triangles in green the means, and the small blue circles the outliers.

The analysis in the box plot shows that there is a significant improvement for the 
Interactive sessions, especially for questions Q1(p = 0.002 ) and Q2(p = 0.001 ). These 
two questions measure the system’s sociability where the feedback corresponds to the 
binary of choice of accept and reject for the Traditional system, and the additional 

Fig. 14   Box plot and p-values of comparative analysis of subjective questions between traditional and inter-
active sessions. Significant results are shown in bold
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live-feedback options for the Interactive system. That is, the results show that the Inter-
active session is statistically significantly better than the traditional session in terms of 
sociability. This improvement is reasonable given the additional dialogue options, such 
as feedback mechanisms, in the Interactive session. Q3 measures the amount of infor-
mation the participants perceived to be fruitful. The added explanations were recog-
nized by the participants to be effective, hence, here too a significant improvement has 
been reported ( p = 0.0009 ). In other words, the participants perceived that the Interac-
tive session provided better information than the traditional session to make an informed 
decision.

Moreover, questions Q4 ( p = 0.874 ), Q5 ( p = 0.838 ), and Q6 ( p = 0.910 ) qualify the 
usability of the system. These values show that there is no significant difference. That 
means that adding an interactive dimension to the system, can still be effective and effi-
cient. This is in line with what we found earlier about the similar number of turns. Lastly, 
we measured the acceptability of the two versions of the system. According to the statisti-
cal test, there is no significant difference between traditional and Interactive systems for Q7 
( p = 0.5 ). The average acceptability score for the Interactive session is approximately 3.85, 
where 3 is neutral and 4 denotes “agree”. Furthermore, we asked all participants which 
systems they prefer. Only a minor part of the participants (3 out of 54 participants or 6% 
of them) prefer the traditional one over the Interactive system. In other words, the majority 
favors the Interactive system (45 participants). The rest is indifferent.

Apart from the comparative analysis, we also ask questions to assess the perceived 
quality of the explanations in our system. Hoffman et al. provide a list of so called good-
ness criteria for explanations [23]. Inspired by those statements, we created corresponding 
statements for the food recommendation system and asked each participant to what extent 
they agreed. Figure 15 shows the questions and the respective average scores. To examine 
whether a learning effect may have influenced the results, we report the average scores 
with respect to (1) participants who started with the traditional sessions (i.e., traditional 
→ Interactive), (2) participants who started with the Interactive session (i.e., Interactive → 
traditional), and (3) all participants irrespective of the order of sessions (i.e., Mixed). It is 

Fig. 15   Evaluation questionnaire results, shown per order of the sessions
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clearly seen that the counter-balancing technique works. The results for both orderings are 
similar. In general, participants are satisfied with the given explanations and appreciated 
the idea of receiving explanations in addition to the given recommendations. They do not 
agree that the explanations were too detailed. In addition, they found the explanations help 
them choose the most convenient recipe.

Lastly, we categorized participants based on their responses to the pre-survey ques-
tion—the importance of the factors on their decision making (See Fig. 11. Since there are 
a few participants who found the most important factor as how the food looks, price of the 
ingredients, and cooking style, we only categorized the participants who voted the most 
important factor in choosing a recipe to be the past experience with taste and the nutri-
tional factors of a given food. This categorization is also in line with our objectives. Fig-
ure 16 shows the score of the aforementioned explanation related questions and responses 
of the participants in each category. Note that since order of session does not influence the 
results, we only show the average scores for all participants who fit in the given category. 
We could not find any significant differences in their responses.

5 � Conclusions

The recent widespread use of opaque AI-based systems is raising questions about trustwor-
thiness and transparency. Skepticism skyrockets when the decisions to be taken are safety-
critical (i.e., AI outcomes can significantly influence people’s life and health—like nutri-
tion). This study presents an interactive explainable recommendation framework where 
the system seamlessly negotiates with its users by making offers and explaining why this 
offer is good for them. The user can criticize the given recommendation and/or associ-
ated explanation. The proposed framework aims to improve the system’s transparency via 
interactive explanations. User experiments have been conducted to evaluate the proposed 
interactive recommender system. Participants have been asked to experience the interac-
tive recommender and the regular one (a version of the system without explanation and 
feedback mechanism), as well as to fill pre- and post-experiment surveys. Although both 
the recommender might have recommended the same food item (in the same conditions), 
experimental results showed that the participants were more satisfied (in general) with the 
idea of explanations and appreciated generated explanations. Moreover, they perceived that 

Fig. 16   Questionnaire results per pre-survey answers
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the information and process for choosing their food recipe were more informative and com-
plete in the proposed interactive recommender and felt more sociable and reactive to their 
feedback. Furthermore, interactive sessions performed slightly better in terms of effective-
ness regarding the number of agreements and rounds.

We have tried to set-up the user studies in such a way that they give reliable results. 
However, our results may still suffer from limitations in the research set-up.

First, although the food recipes are derived from a real food recipe repository prepared by 
some nutritionists, it is worth noticing that participants were involved in a system test rather 
than receiving accurate food advice. We mainly compare interactive explainable recom-
menders with regular recommenders by keeping their recommendation strategy the same.

Second, in this research the main difference between a regular recommender and an 
interactive recommender system is the presence or absence of both explanation and feed-
back. Therefore, it is not possible to distinguish which effect, added explanation or added 
feedback, is responsible for the results. This signals a clear limitation in the set-up of the 
user experiments. In defense, consider the alternative. To separate these effects would 
require building a recommender system that allows negative feedback, without providing a 
response to that feedback in the form of a better explanation. Although theoretically inter-
esting, that would not be a practically useful system.

Third, there is a lot of room to improve the recommendation algorithm itself. For exam-
ple, we envision learning user preferences over time, and adapting the system behavior 
accordingly. Yet, our results already show that the proposed approach is promising.

In future work, we plan to study the effect of the precise moment in which the expla-
nations are displayed, during the interaction and decision-making process. Recall that the 
current system generates explanations whenever it provides a recommendation. An inter-
esting alternative would be to investigate so-called on-demand explanations, which are 
only provided when the need occurs. The need for an explanation may be signalled by a 
question like ‘why’ or ‘how’?.

Furthermore, we plan to measure the effectiveness of each type of explanation strategy 
(user-centred, contrastive, counterfactual, etc) individually, rather than as the combined 
whole, we have now.

The ultimate goal of our research is to refine the current recommender engine, and inte-
grate it into an existing chatbot framework for persuading and helping a user to change eat-
ing habits over a longer period of time. The existing chatbot system is called EREBOTS [7]. 
The combination of long-term persuasion and coaching from EREBOTS and explainable 
recommendation sessions from this system, will realize a fully agentified NVC system.
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