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Abstract
We introduce a family of processes that generalises captive diffusions, whereby the stochastic
evolution that remains within a pair of time-dependent boundaries can further be piecewise-
tunneled internally. The tunneling effect on the dynamics can be random such that the process
has non-zero probability to find itself within any possible tunnel at any given time. We study
some properties of these processes and apply them in modelling corridored random particles
that can be observed in fluid dynamics and channeled systems. We construct and simulate
mean-reverting piecewise-tunneled captive models for demonstration. We also propose a
doubly-stochastic system in which the tunnels themselves are generated randomly by another
stochastic process that jumps at random times.

Keywords Captive diffusions · Particle systems · Bounded processes

Mathematics Subject Classification: 60

1 Introduction

Stochastic phenomenon restricted to evolve within given boundaries are commonly observed
in numerous scientific fields including physics, engineering, biology and finance. It is thus
by no surprise to find a fairly large body of academic literature involving random processes
that are not allowed to leave some given domain. To name a few amongst many, we refer
to reflected diffusions, reflected Ornstein–Uhlenbeck processes, Skorokhod-type stochas-
tic differential equations (SDEs), diffusions on submanifolds, Bessel processes, Brownian
excursions and non-colliding diffusions; see [1–18].
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For this work, the most relevant class of processes that cannot break free from exogenous
boundaries are the captive diffusions of [19]—which are degenerate Markov processes, and
are solutions to a family of SDEs with continuous coefficients satisfying some regularity
conditions with respect to a pair of càdlàg paths that are right-differentiable where they
are continuous. In [19], these processes are applied to model order-preserving dynamics,
which may appear in different forms across different areas such as randommatrix theory and
interacting particle systems [20–22]. The aforementioned captive diffusions have later been
used to construct Hermitian-valued diffusions on a convex cone of positive semi-definite
matrices that evolve ‘between’ Hermitian-valued boundaries in the Loewner sense, which
were used to solve a particular class of quadratic optimization problems that can generate
captive efficient frontiers for purposes of volatility hedging andother riskmanagementmodels
(see, [23]).

In this paper, we are able to produce a model which not only encapsulates stochastic
behaviour restricted to evolve within a given pair of boundaries, but can also admit ran-
domly tunneled (or corridored) movements internally within the same restricted domain.
Our motivation arises from channeling dynamics observed in physics [24–28], and from fluid
dynamics where particles display random spatial variations [29–33]. Here, we aim to pro-
pose a tractable probabilistic framework that can be used to represent trajectories of random
paths that evolvewithinmultiple corridors with varying geometries. As such, we significantly
generalise the captive diffusions of [19] using path-dependent SDE coefficients in relation
to the given pair of boundaries and internal tunnel transitions. This paves way to a much
wider range of stochastic behaviour under different state-spaces subject to multiple regime
switches, translocational splits or bifurfactions. For example, our framework can be applied
to modelling transitions between laminar flows and turbulent flows in a fluid system as the
domain gets branched out into different flow regimes; another example of this behaviour can
also be found in hemodynamics, where the varying geometry of the vessels directly governs
the nature of blood flow. The framework may also find use in applications in high-throughput
cytometry, intermolecular interactions during channel transports and bioparticle separation.

One of the main objectives of this paper is to investigate the little-researched phenomenon
of how a stochastic particle adopts, and responds to, the complex geometry of a maze-like
domain consisting of multiple corridors that also act, in themselves, as internal boundaries
in a restricted state-space. In this sense, our framework considerably loosens the limitations
of single-regime systems studied in the existing literature, such that the underlying geometry
of the bounded state-space, in which a particle evolves, may lose its uniformity if divided
into sub-spaces. This brings to mind several physical occurrences, like the motions of dif-
fusing particles that are fired off into a multi-layered collider. In such a system, one can
study the dynamics of these particles while they randomly enter and exit bifurcating tun-
nels (that may represent different regimes or force fields), and interact with interior walls
at random, potentially gaining or losing energy as a result, and sometimes colliding with
other particles in the system. If the experimenter seeks a purely controlled environment, the
underlying principles of the model may help them design a pipeline where two particles are
fired off simultaneously into two separate tunnels, such that they move in isolation for a
pre-determined duration, and are later allowed to discharge into a wider (but still a bounded)
domain where they collide with non-zero probability. The general environment of the two
(or more) separate tunnels could be kept under dissimilar conditions at all times (e.g. by
varying the elasticity of their interior walls, or the viscosity of their natural mediums, or
the temperature of their surroundings) such that the particles, in their own right, could be
subject to diverse habitats before being forced into a more unified state-space that allows
particle interaction, while still maintaining the continuity of the underlying system. Then
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again, the opposite scenario may also hold, such that two particles would commence their
journey in chorus in a unified domain, only to be channeled into different environments
defined by lateral tunnels, and later to be thrown into a new shared domain with exogenous
boundaries, if needed—we will be able to model such scenarios as part of our application
later in the paper. These questions may also become relevant when dealing with inertial lift
forces in laminar microfluidic systems with multiple streamlines (see [34] for applications in
a single-streamline scenario with randomly distributed particles). Considering the flexibility
of our proposed architecture, examples of such nature may be further enriched, but are, by no
means, exhaustive. For instance, our framework can be put in service to study inertial self-
ordering and particle focusing in microchannels with symmetric or asymmetric geometries,
or to generate regime-driven efficient frontiers in intertemporal risk minimisation problems,
or to price more complex barrier options in finance—these are the research directions we
leave for future. Furthermore, our framework allows one to control the Lebesgue measures
of reflection at boundaries (see [2]) purely through the drift coefficients (a useful trait for
calibration purposes in practice), which enable instantaneous reflections, delayed reflections
or even absorptions at hitting times, depending on the nature of the underlying experiment.
In essence, we aim to introduce a general mathematical recipe to construct a large family
of stochastic processes that can be used to model, simulate and calibrate particle systems in
restrictive geometries that admit a wide range of complexities through dynamic combinations
of spatial fragmentation.

We keep this paper more on the applied side and leave a purely theoretical study for future.
The structure of this work is as follows. In Sect. 2, we define what we call piecewise-tunneled
captive processes as solutions to a family of path-dependent SDEs and study some of their
properties. In Sect. 3, we construct explicit examples withmean-reverting behaviour tomodel
corridored random particle systems and provide simulations for demonstration. In Sect. 4, we
generalise the setup to the multivariate case, which allows one to introduce coupling effects
between captive particles. We also produce a doubly-path-dependent extension in order to
embed additional path memory into the evolution of particles. Finally, we propose a doubly-
stochastic framework where tunnel trajectories are generated by a stochastic counting (jump)
process that produces the internal random corridors. Section 5 concludes.

2 Piecewise-Tunneled Captive Processes

We shall start this section with a physical system to motivate the general mathematical setup
we introduce later on. Imagine a particle that moves in time within a closed tube, never
allowed to penetrate through its walls. The behaviour of the particle is further subject to
forces that make its trajectories randomwithin the tube. Now imagine that the tube gets more
granular with the appearance of multiple internal corridors (or tunnels) at different times,
which makes the movement of the particle more restricted whenever it finds itself in any
of these corridors that have their own impenetrable walls. Assume further that the possible
trajectories of the particle are affected by its current position and its distance to the walls
(see, for example [35–37]), such that the particle gets stuck or absorbed in these walls if it
hits any one of them.

As an example, we can model such dynamics using Brownian motion which is scaled by
a polynomial coefficient as a function of the current position of the particle, where the map
has its roots at the location of the walls. The following toy model of a particle {Xt }0≤t<∞
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moving in time t captures the aforementioned dynamics:

Xt = x0 +
∫ t

0
(Xs − L)(M − Xs + fs)(U − Xs)dWs, (1)

where x0 ∈ [L,U ] is the initial point, {Wt }0≤t<∞ is a Brownian motion, L and U form the
constant positions of the lowermost and uppermost walls of the tube, and M is the position
of an internal wall that divides the main tube into two narrower internal corridors, such that
L < M < U . If we choose f : R+ → R as a continuous function where ft �= 0 for t < t̄
and ft = 0 for t ≥ t̄ for some fixed time point t̄ > 0, then we have a model of a particle that
satisfies the following:

1. {Xt }0≤t<∞ always remains between L and U
2. If {Xt }0≤t<∞ hits L or U at any time, it gets stuck there for the rest of its lifetime
3. The wall of the internal corridor M appears at time t̄ and {Xt }t̄≤t<∞ remains either within

[M,U ] or within [L, M] depending on which corridor the particle entered at time t̄
4. Once in one of the internal corridors [M,U ] or [L, M], if {Xt }t̄≤t<∞ hits M , it gets stuck

there for the rest if its lifetime

The equation above is a very specific example that we can propose. As such, we shall produce
a significantlymore general family of processes that can capturemore complicated dynamics,
while still being enclosed by outermostwalls aswell as internal tunnelswhenever they appear.
To the best of our knowledge, there is nowork that can address the encapsulation of stochastic
paths within heterogeneously-formed internal corridors in the generalisation we propose in
this paper, which we manage to do so through path-dependent SDEs—for example, captive
diffusions of [19] cannot capture internal corridors. This paper can essentially serve as a
mathematical platform to construct bounded stochastic models within such geometries that
can embed absorbed and reflected particles.

2.1 Main Results

Let (�,F, {Ft }t≤∞,P) be a filtered probability space, where all filtrations are right-
continuous and complete, and where F∞ = F . We use B to denote the Borel σ -field
and choose a fixed time interval T = [0, T ] for some T < ∞. We work on the Sko-
rokhod space of càdlàg (right-continuous with left-limits) functions D(T × R) ⊂ �, where
C(T×R) ⊂ D(T×R) is its subspace of continuous paths.We use themap X : C(T×R) → R

to construct a continuous-time process {Xt }t∈T and denote {F X
t }t∈T as its natural filtration

given by F X
t = σ({Xs} : 0 ≤ s ≤ t), such that F X

t ⊂ Ft is a sub-algebra for every t ∈ T.
We let M(T × R) ⊂ C(T × R) be the space of continuous R-valued (P, {Ft })-martingales.
We sometimes write X(t) = Xt for t ∈ T interchangeably. We shall now define a family of
functions which will be used throughout the paper to model time-dependent boundaries.

Definition 2.1 Let G̃ ⊂ D(T × R) be a set of measurable càdlàg functions, such that for
any function g ∈ G̃, g : T → R is a locally bounded map with a locally bounded right-
derivative dg+(t)/dt on the time-intervals where g(t) is continuous. In addition, let G ⊂ G̃
be the subset of purely continuous functions that are locally bounded with locally bounded
right-derivatives.

For any g ∈ G̃, we denote �gt = gt − gt− for all t ∈ T, which means that �gt = 0
implies g is continuous at t and �gt �= 0 implies there is discontinuity at t .

Definition 2.2 Let G̃(l) ⊂ G̃ and G̃(u) ⊂ G̃ be the subspaces such that
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1. Every g ∈ G̃(l) satisfies �gt ≤ 0 for all t ∈ T

2. Every g ∈ G̃(u) satisfies �gt ≥ 0 for all t ∈ T

We note that the intersection of G̃(l) and G̃(u) is given by

G̃(l) ∩ G̃(u) = G.

In order to model internal corridors that can appear at different times, we shall work with
different time-segments denoted by T

( j) ⊆ T for j = 0 . . . ,m ∈ N+, for some fixed
1 ≤ m < ∞, where we define these segments as follows:

T
( j) = [τ ( j)

start, τ
( j)
end]with0 ≤ τ

( j)
start < τ

( j)
end ≤ T ,

for j = 0, . . . ,m. For j = 0 and j = m, we specifically set

τ
(0)
start = τ

(m)
start = 0andτ (0)

end = τ
(m)
end = T ,

which implies T(0) = T
(m) = T. We associate a boundary process {g( j)

t }t∈T( j) to each of
these time-segments, where g(0) ∈ G̃(l), g(m) ∈ G̃(u) and g( j) ∈ G for any j �= 0 and j �= m
when m > 1. We order these boundaries such that

g( j)
t < g(k)

t for any j < kat anyt ∈ T
( j) ∩ T

(k) �= ∅.

For g( j)
t and g(k)

t where T
( j) ∩ T

(k) = ∅, the indexation amongst them can be pairwise-
arbitrary as long as the remaining ordering scheme is preserved. Finally, we write

gt = {g(0)
t , . . . , g(m)

t }
to collate all the boundaries, where if for a given t ∈ T there are g( j)

t s not defined over that

t , it should be understood that gt does not include those g
( j)
t s at that t ∈ T.

Remark 2.3 We refer to g(0) and g(m) as the master boundaries, since they will define the
lowest and largest boundaries of our captive processes, respectively, running over the entire
T. Whenm > 1, we refer to g( j) for j �= 0 and j �= m as the tunneling (internal) boundaries,
since they remain between g(0) and g(m) over their respective time-segments.

We introduce a non-anticipative monitoring process {�t }t∈T that keeps track of the values
of our captive process {Xt }t∈T (that we formally introduce in Definition 2.6 below) at the
start of each time-segment. This will allow us to construct path-dependent coefficients that
will ensure the captivity of our process within the master boundaries as well as the internal
tunnels.

Definition 2.4 Let {�t }t∈T be a set-valued process that records the values of {Xt }t∈T at
discrete time points τ

( j)
start at the start of each time-segment T( j), given by

�t =
{
X

τ
( j)
start

: τ
( j)
start ≤ t, for j = 0, . . . ,m

}
. (2)

Let {|�t |}t∈T be the integer-valued process, where |�t | is the number of elements of �t at
t ∈ T.

We shall clarify the notion of measurability for set-valued random variables since �t is a
set-valued random variable for each t ∈ T. First of all, with m < ∞, �t is a compact-set for
every t ∈ T. Hence, if X (R) denotes the family of compact subsets of R, then

� : � × T → X (R)
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is our random compact set, for which the measurability condition is given by

{(ω, t) ∈ � × T : �t (ω) ∩ A �= ∅} ∈ F∀A ∈ B(R),�t (ω) ∈ X (R). (3)

Note that the measurability in (3) is similar to the definition of measurable functions, but
where a set intersection modification appears to account for set-valued maps. We refer to
[38–42] for definitions of measurability for set-valued random variables. For {�t }t∈T to be
adapted, we ask it to be progressively measurable, which means the map �

(ω, t) → �t (ω)is
(
F X
t ⊗ B(T)

)
-measurable∀t ∈ T, (4)

in the above sense. Finally, when we mean that a function is continuous with respect to �,
the topology we refer to is the continuity with respect to each element of �t at that t ∈ T.

Remark 2.5 Note that {|�t |}t∈T is a non-decreasing process, where |�0| ≥ 1, since τ
(0)
start =

τ
(m)
start = 0, and |�T | ≤ m. That is, �0 = {X0} and we either have �T = {X0} if m = 1 or

�T = {X0, . . . , Xτ
(m−1)
start

},

if m > 1 such that if there are any repeating τ
( j)
start they collapse to one point.

We shall now introduce our main object; a class of stochastic processes that generalise
the captive processes of [19]. For notational parsimony, we remain with R-valued processes,
and provide an R

n-valued extension for n ∈ N+ later in the paper. We highlight that there
is a deep and well-established literature on existence and uniqueness results for solutions of
SDEs (see, [43, 44]). Since the main focus of this paper is not on existence and uniqueness,
we do not specify particular sufficiency conditions (e.g. local Lipschitz continuity and linear
growth) on the family of SDEs we work with, but instead, define our captive processes as
solutions when they exist and are well-posed. We shall however prove an existence result
later for an example model we will provide.

Definition 2.6 Keep the boundary setup as above. Then, a piecewise-tunneled captive process
{Xt }t∈T ∈ C(T × R) is the solution to an SDE governed by

Xt = x0 +
∫ t

0
μ

(
s, �s, Xs; gs

)
ds +

∫ t

0
σ

(
s, �s, Xs; gs

)
dMs, (5)

with initial condition X0 = x0 ∈ [g(0)
0 , g(m)

0 ), whereμ and σ are continuous maps, satisfying
the following conditions:

1. μ
(
t, �t , g

( j)
t− ; gt

)
≥ dg( j)

+ (t)/dt + �g( j)
t if X

τ
( j)
start

≥ g( j)

τ
( j)
start

, for any t ∈ T
( j) where

Xt− = g( j)
t−

2. μ
(
t, �t , g

( j)
t− ; gt

)
≤ dg( j)

+ (t)/dt + �g( j)
t if X

τ
( j)
start

< g( j)

τ
( j)
start

, for any t ∈ T
( j) where

Xt− = g( j)
t−

3. σ
(
t, �t , g

( j)
t− ; gt

)
= 0, for any t ∈ T

( j) where Xt− = g( j)
t−

for every j = 0, . . . ,m, where {Mt }t∈T ∈ M(T × R).

In Definition 2.6, X(τ
( j)
start) = g( j)(τ

( j)
start) is associated to Property 1, which is a subjective

choice, and may as well be associated to Property 2 if x0 ∈ (g(0)
0 , g(m)

0 ] is the corresponding
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initial condition. This is a purely technical point since we haveP(X(τ
( j)
start) = g( j)(τ

( j)
start)) = 0

for any τ
( j)
start > 0 due to the continuity of {Xt }t∈T. The following statement is immediate

from Definition 2.6.

Proposition 2.7 Let {Wt }t∈T be a (P, {F X
t })-Brownianmotion, and set Mt = Wt for all t ∈ T

in (5). Then a piecewise-tunneled captive process {Xt }t∈T is a (P, {F X
t })-Markov process if

and only if

μ
(
t, �t , Xt ; gt

) = μ
(
t, Xt ; gt

)
andσ

(
t, �t , Xt ; gt

) = σ
(
t, Xt ; gt

)
.

Piecewise-tunneled captive processes boil down to the captive diffusions of [19] with
m = 1 when Proposition 2.7 holds. Otherwise, Definition 2.6 extends [19] through path-
dependent coefficients with respect to the monitoring process {�t }t∈T that breaks the
Markovian property, even if Mt = Wt for all t ∈ T. The possibility of having path-
dependency is a key property for our result below.

Proposition 2.8 The following hold P-almost-surely:

1. If X
τ

( j)
start

≥ g( j)

τ
( j)
start

then Xt ≥ g( j)
t for all t ∈ T

( j),

2. If X
τ

( j)
start

< g( j)

τ
( j)
start

then Xt ≤ g( j)
t for all t ∈ T

( j)/{τ ( j)
start}.

Proof We start with the case where g( j) ∈ G for every j = 1, . . . ,m. Note that Xt is
differentiable with respect to time if and only if σ(t, ) = 0 at that t ∈ T, given that μ is
continuous, and hence, is locally bounded. Therefore, using property 3. in Definition 2.6,
Xt is differentiable at every Xt = g( j)

t . Now let X(τ
( j)
start) ≥ g( j)(τ

( j)
start). Since g( j) has

locally bounded first right-derivatives and μ is locally bounded, using properties 1. and 3. in
Definition 2.6, we have the following when Xt = g( j)

t for any t ∈ T
( j):

μ
(
t, �t , g

( j)
t ; gt

)
= lim

ε→0+
Xt+ε − g( j)

t

ε
≥ lim

ε→0+
g( j)
t+ε − g( j)

t

ε
,

and since {Mt }t∈T ∈ M(T × R) and μ and σ are continuous maps, {Xt }t∈T has continuous
paths P-a.s., and applying mean-value theorem, Xt ≥ g( j)

t must hold for all t ∈ T
( j). Now

let X(τ
( j)
start) < g( j)(τ

( j)
start). Then similarly, using properties 2. and 3. in Definition 2.6, we get

the opposite side with Xt = g( j)
t :

μ
(
t, �t , g

( j)
t ; gt

)
= lim

ε→0+
Xt+ε − g( j)

t

ε
≤ lim

ε→0+
g( j)
t+ε − g( j)

t

ε
,

for any t ∈ T
( j)/{τ ( j)

start}, which implies that Xt ≤ g( j)
t for all t ∈ T

( j)/{τ ( j)
start}. Finally, when

we allow g(0) ∈ G̃(l), g(m) ∈ G̃(u), we can further allow vertical adjustments to μ at the
left-limits of the master boundaries, where the set of jumps

J = {t ∈ T : �g(0)
t �= 0 ∪ �g(m)

t �= 0}
is countable and Xt− = lims→t,s<t Xs = g(0)(t−) implies Xt = g(0)(t−) and Xt− =
lims→t,s<t Xs = g(m)(t−) implies Xt = g(m)(t−) P-a.s., again due the continuity of
{Xt }t∈T. We can thus follow similar steps as above with the additional adjustments of
�g(0)

t ≤ 0 and �g(m)
t ≥ 0 at every t ∈ J . ��
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Proposition 2.8 tells us P-a.s. that {Xt }t∈T remains between the master boundaries

g(0)
t ≤ Xt ≤ g(m)

t

for all t ∈ T, and within any given tunnel

g( j)
t ≤ Xt ≤ g(k)

t

with j < k for all t ∈ T
( j) ∩T

(k) �= ∅, if it entered that tunnel. This very behaviour gives the
process {Xt }t∈T its name inDefinition 2.6.Beforewegive an example of a piecewise-tunneled
captive process, we shall prove the following existence result that will be useful. Below, we
denote C1 as the space of continuous functions that admit continuous first derivatives. We
also define

τt = 0 ∨ sup{τ (i)
start : τ

(i)
start ≤ t,∀i ∈ I},

where we adopt the convention sup∅ = −∞, and write I = {1, . . . ,m − 1}.

Proposition 2.9 Choose {Mt }t∈T = {Wt }t∈T. Letμ and σ satisfy the conditions in Definition
2.6, and be C1 functions with respect to X and locally Lipschitz continuous functions with
respect to the elements of � for which we can write μ(�t ) = μ(X0, . . . , Xτt ) and σ(�t ) =
σ(X0, . . . , Xτt ) for any t ∈ T. Then solution (5) exists.

Proof Since μ(�t ) = μ(X0, . . . , Xτt ) and σ(�t ) = σ(X0, . . . , Xτt ), local Lipschitz conti-
nuity of μ and σ with respect to the elements of � can be understood in the usual sense –
here all other parameters in the functions μ and σ are dropped for notational convenience.
It remains to show that (5) satisfies local Lipschitz continuity given that μ and σ are C1 in
X , which can be done in a standard way. First note that we have x0 ∈ [g(0)

0 , g(m)
0 ). Since

μ : [g(0)
0 , g(m)

0 ) → R and σ : [g(0)
0 , g(m)

0 ) → R are in C1, their derivatives μ
′
and σ

′
are

continuous, and hence, locally bounded satisfying

|μ′
(x)| ≤ Kμand|σ ′

(x)| ≤ Kσ

for all x ∈ [g(0)
0 , g(m)

0 ), given that Kμ and Kσ are constants. Thus, for any x1, x2 ∈ [g(0)
0 , g(m)

0 )

where x1 ≤ x2, we have

|μ(x1) − μ(x2)| = |μ′
(y)||x1 − x2| ≤ Kμ|x1 − x2|

|σ(x1) − σ(x2)| = |σ ′
(y)||x1 − x2| ≤ Kσ |x1 − x2|

by applying mean-value theorem, given that y ∈ [g(0)
0 , g(m)

0 ). Thus, both μ and σ are locally
Lipschitz continuous with respect to X which imply

|μ(x1) − μ(x2)| + |σ(x1) − σ(x2)| ≤ (Kμ + Kσ )|x1 − x2| � K |x1 − x2|. (6)

Finally, since μ and σ are continuous (from Definition 2.6) and (6) holds, there exists a
constant L such that the local linear growth condition is satisfied:

|μ(x)| + |σ(x)| ≤ L(1 + |x |).
It follows that (5) exists based on Itô existence theorem. ��
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Example 2.10 Using Proposition 2.9, we can propose a piecewise-tunneled captive process
with a dynamically mean-reverting drift coefficient and a multiplicative diffusion coefficient
as follows:

Xt = x0 +
∫ t

0
κs

(
βs(�s; gs) − Xs

)
ds +

∫ t

0
αs

m∏
j=0

(
f ( j)
s (g( j)

s ) − Xs

)
dWs, (7)

for x0 ∈ [g(0)
0 , g(m)

0 ), where {αt }t∈T and {κt }t∈T > 0 are adapted continuous maps,
{βt }t∈T is locally Lipschitz continuous with respect to the elements of � where βt (�t ) =
βt (X0, . . . , Xτt ) for any t ∈ T, and { f ( j)

t }t∈T is an adapted continuous map where

{ f ( j)
t }t∈T( j) = {g( j)

t }t∈T( j) .

Here, σ satisfies property 2. in Definition 2.6. For μ to satisfy property 1. in Definition 2.6,
{βt }t∈T needs to dynamically map the elements of � into subdomains remaining between
the tunnels – we shall provide an explicit example of (7) through mean-reversion dynamics
later in the paper.

Note that μ in (7) is linear in X , and hence is C1 in X . In addition, σ in (7) is a polynomial
function of X , and hence is also C1 in X – thus, solution (7) exists from Proposition 2.9.

Note that any piecewise-tunneled captive process {Xt }t∈T is a (P, {F X
t })-semimartingale

given that μ has locally bounded variation. Then the following limits exist:

Ly(t)
+ = lim

ε→0

1

ε

∫ t

τ
( j)
start

1 (Xs ∈ [y, y + ε]) d 〈Xs, Xs〉 ,

Ly(t)
− = lim

ε→0

1

ε

∫ t

τ
( j)
start

1 (Xs ∈ [y, y − ε]) d 〈Xs, Xs〉 ,

for t ∈ T
( j) and some ε > 0 and y ∈ R, where 1(A) denotes the indicator function for some

A ∈ B(R), and 〈. , .〉 is the quadratic variation:

〈Xt , Xt 〉 = 〈X
τ

( j)
start

, X
τ

( j)
start

〉 +
∫ t

τ
( j)
start

σ
(
s, �s, Xs; gs

)2 d〈Ms, Ms〉,

and Ly(t)+ and Ly(t)− are the right and left local times of {Xt }t∈T( j) at y ∈ R, respectively.
Note that local times can be used to quantify the amount of time {Xt }t∈T( j) spends at some
given position. For the next statement, we let

∂D( j) = {y : y ∈ im(g( j))},
where im( f ) is the image of a function f .

Proposition 2.11 Let {Xt }t∈T be a (P, {F X
t })-semimartingale and g( j) be constant such that

g( j)(t) = g( j)(t
′
) for every t �= t

′
. Then, for any y ∈ ∂D( j) and t ∈ T

( j)/{τ ( j)
start} for

j = 1 . . . ,m, all of the following hold:

1. L y(t)+ = 2
∫ t
τ

( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds if X

τ
( j)
start

≥ g( j)

τ
( j)
start

2. L y(t)+ = 0 if X
τ

( j)
start

< g( j)

τ
( j)
start

3. L y(t)− = −2
∫ t
τ

( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds if X

τ
( j)
start

< g( j)

τ
( j)
start

4. L y(t)− = 0 if X
τ

( j)
start

≥ g( j)

τ
( j)
start
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Proof Define the functions sgn(x)+ = 1(x > 0) − 1(x ≤ 0) and sgn(x)− = 1(x ≥
0) − 1(x < 0), and let y ∈ ∂D( j). For t ∈ T

( j), using Tanaka formula, we have the
following:

Ly(t)
+ = |Xt − y| − |X

τ
( j)
start

− y| −
∫ t

τ
( j)
start

sgn(Xs − y)+dXs (8)

Ly(t)
− = |Xt − y| − |X

τ
( j)
start

− y| −
∫ t

τ
( j)
start

sgn(Xs − y)−dXs . (9)

From Proposition 2.8, if X
τ

( j)
start

≥ g( j)

τ
( j)
start

, then Xt ≥ y P-a.s. for any t ∈ T
( j), given that

g( j) = y is constant. Hence, using (8), we get

Ly(t)
+ = Xt − X

τ
( j)
start

−
∫ t

τ
( j)
start

1 (Xs > y) μ
(
s, �s, Xs; gs

)
ds

+
∫ t

τ
( j)
start

1 (Xs ≤ y) μ
(
s, �s, Xs; gs

)
ds

−
∫ t

τ
( j)
start

1 (Xs > y) σ
(
s, �s, Xs; gs

)
dMs

+
∫ t

τ
( j)
start

1 (Xs ≤ y) σ
(
s, �s, Xs; gs

)
dMs

= Xt − X
τ

( j)
start

+ 2
∫ t

τ
( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds

−
∫ t

τ
( j)
start

μ
(
s, �s, Xs; gs

)
ds −

∫ t

τ
( j)
start

σ
(
s, �s, Xs; gs

)
dMs

= 2
∫ t

τ
( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds.

From Proposition 2.8, if X
τ

( j)
start

< g( j)

τ
( j)
start

, then Xt ≤ y P-a.s. for any t ∈ T/{τ ( j)
start}, with

g( j) = y. Hence, we get

Ly(t)
+ = X

τ
( j)
start

− Xt +
∫ t

τ
( j)
start

1 (Xs ≤ y) μ
(
s, �s, Xs; gs

)
ds

+
∫ t

τ
( j)
start

1 (Xs ≤ y) σ
(
s, �s, Xs; gs

)
dMs

= X
τ

( j)
start

− Xt +
∫ t

τ
( j)
start

dXs = 0.

On the other hand, using (9), since X
τ

( j)
start

< g( j)

τ
( j)
start

implies Xt ≤ y P-a.s. for any t ∈ T/{τ ( j)
start}

as above, we have the following:

Ly(t)
− = X

τ
( j)
start

− Xt −
∫ t

τ
( j)
start

1 (Xs ≥ y) μ
(
s, �s, Xs; gs

)
ds

+
∫ t

τ
( j)
start

1 (Xs < y) μ
(
s, �s, Xs; gs

)
ds
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−
∫ t

τ
( j)
start

1 (Xs ≥ y) σ
(
s, �s, Xs; gs

)
dMs

+
∫ t

τ
( j)
start

1 (Xs < y) σ
(
s, �s, Xs; gs

)
dMs

= X
τ

( j)
start

− Xt − 2
∫ t

τ
( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds

+
∫ t

τ
( j)
start

μ
(
s, �s, Xs; gs

)
ds +

∫ t

τ
( j)
start

σ
(
s, �s, Xs; gs

)
dM (i)

s

= −2
∫ t

τ
( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds.

Following similar steps as above, we finally get Ly(t)− = 0 if X
τ

( j)
start

≥ g( j)

τ
( j)
start

. ��

Remark 2.12 Note that if we have

P

(∫ t

τ
( j)
start

1 (Xs = y) μ
(
s, �s, Xs; gs

)
ds = 0

)
= 1,

then from Proposition 2.11, we have

Ly(t)
+ = Ly(t)

− = 0,

in any scenario for t ∈ T
( j)/{τ ( j)

start}, j = 1 . . . ,m.

In certain cases, we would want to work with piecewise-tunneled captives which are strict
(P, {F X

t })-martingales. For this, we would need to have g( j)s satisfy certain characteristics.
As such, for our next result, we define the time-segments T ( j) ⊆ T

( j) where the probability
that {Xt }t∈T may hit the corresponding boundary is larger than zero:

T ( j) =
{
t : P

(
Xt ∈ δg( j)(t)

)
> 0; fort ∈ T

( j)
}

,

where δg( j)(t) is the spatial differential of g( j)(t) at a fixed time t ∈ T
( j).

Proposition 2.13 If the piecewise-tunneled captive process {Xt }t∈T is a (P, {F X
t })

-martingale, then all of the following must hold:

1. −�g(0)
t ≥ dg(0)

+ (t)/dt for all t ∈ T (0),

2. −�g(m)
t ≤ dg(m)

+ (t)/dt for all t ∈ T (m),

3. Each g( j)
t for j �= 0 and j �= m is constant for all t ∈ T ( j)

Proof If {Xt }t∈T is a (P, {F X
t })-martingale, then we must have μ

(
t, �t , Xt ; gt

) = 0 for all
t ∈ T. Thus, from Definition 2.6, we must have

0 ≥ dg(0)
+ (t)/dt + �g(0)

t ,

for all t ∈ T (0) due to property 1, and the following:

0 ≤ dg(m)
+ (t)/dt + �g(m)

t ,
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for all t ∈ T (m) due to property 2. For any other j �= 0 and j �= m where g( j) ∈ G so that
�g( j)

t = 0, all possible trajectories of {Xt }t∈T dictates that either of the following will apply:

X(τ
( j)
start) ≥ g( j)(τ

( j)
start)orX(τ

( j)
start) < g( j)(τ

( j)
start),

from all possible path realizations P-a.s. Since both property 1 and property 2 in Definition
2.6 must hold, and having μ

(
t, �t , Xt ; gt

) = 0 for all t ∈ T, we must have

0 ≤ dg( j)
+ (t)/dt ≤ 0

which means dg( j)
+ (t)/dt = 0 for all t ∈ T ( j). ��

When the master boundaries are continuous everywhere, the statement below follows
immediately from Proposition 2.13—that is, the master boundaries must be monotonic.

Remark 2.14 If all boundaries are continuous with �g(0)
t = 0 and �g(m)

t = 0 for all t ∈ T

so that g(0), g(m) ∈ G, and {Xt }t∈T is a (P, {F X
t })-martingale, then

1. g(0) is non-increasing over T (0)

2. g(m) is non-decreasing over T (m)

3. Each g( j) for j �= 0 and j �= m is constant over T ( j)

If for the martingale case, all boundaries are constant, then the boundaries must be absorbing.
That is, if {Xt }t∈T hits any of the constant boundaries at any given time, then the process
gets stuck there for the rest of its lifetime – recall the example we considered in (1), which
is a martingale.

Proposition 2.15 If {Xt }t∈T is a (P, {F X
t })-martingale and g( j) is constant such that

g( j)(t) = g( j)(t
′
) for every t �= t

′
, then {Xt }t∈T gets absorbed in g( j) as of its first hitting-

time.

Proof Let the random variable ρ( j) be the first hitting-time to boundary g( j) given by

ρ( j) = inf{t ≥ 0 : Xt = g( j)},
wherewe adopt the convention inf ∅ = ∞. Define {Y ( j)

t }t∈T( j) = {Xt∧ρ( j)}t∈T( j) be a stopped

piecewise-tunneled captive process. If {Xt }t∈T is a (P, {F X
t })-martingale and g( j) is constant,

then

{Xt }t∈T( j) = {Y ( j)
t }t∈T( j) ,

must hold since μ
(
t, �t , Xt ; gt

) = 0 for all t ∈ T. ��
More generally, {Xt }t∈T can demonstrate absorbing or reflecting dynamics with respect to
its master boundaries and its internal tunnels. In fact, {Xt }t∈T can display both absorbing and
reflecting behaviour over non-overlapping time horizons depending on how theμ coefficient
evolves over time.

Remark 2.16 It would be interesting to apply piecewise-tunneled captives within the field of
stochastic partial differential equations (SPDEs), where the randomnoise component belongs
to our proposed family of processes. We leave this direction for future research as it merits
dedicated analysis.
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3 Corridored Random Particle Systems

We shall apply piecewise-tunneled captives to model random particle systems that can arise
in various fields ranging from fluid dynamics in microchannels to regime-switching popu-
lation models under restricted conditions. The specific setup below, in principle, has certain
overlaps with the literature on reflected diffusions in confined geometries. Reflected diffusion
processes, in general, represent systems in which random paths exhibit continuous returns
to the interiors of a single state-space after hitting an impassable boundary. The length of
time that these processes spend at the boundary determines whether they are subject to an
instantaneous reflection (with zero Lebesgue measure) or a delayed reflection (with positive
Lebesguemeasure), such that the underlying processes demonstrate, by virtue of their consti-
tution, a set of varying characteristics of first-time passages. The physics of the phenomenon
is sometimes linked to the movements of a particle whose velocity at the boundary is identi-
cal to the velocity of its exit. In a world of elastic boundaries, a particle with finite velocity
would undergo a delayed reflection (with a partially-reduced velocity at the reflection point)
to ensure finite displacement in a positive duration of time (see [2]).

Themean-reversion aspect of reflected diffusions have gained considerable attention in the
literature. Spectral methods have been used in [13] to provide clear expressions for reflected
Ornstein–Uhlenbeck processes (ROU) and the associated transition densities. Some of the
underlying assumptionswere applied to queuing systems, such as [10],which studied both the
steady-state and the transient behaviour of the Ornstein–Uhlenbeck diffusions with a zero
reflecting boundary, together with their moments and first-time passages when the corre-
sponding boundary is significantly distanced from the origin. This model was later expanded
by [15] which investigated the Laplace transform of the first-passage times of the Ornstein–
Uhlenbeck diffusions with two-sided boundaries (see [45] for another application in queuing
systems). Recently [46] discovered an interesting connection between Cox-Ingersoll-Ross
process and ROU, arguing that, with probability 1, the square root of the former converges
uniformly to the latter as the mean-reversion parameter tends to 0 in the fractional case. In
finance, while [47] focused on interest rate models under reflecting and absorbing bound-
aries, [48] studied the pricing of barrier options on zero-coupon bonds. As an extension, [49]
computed the conditional default probabilities of the price dynamics (e.g. digital options)
driven by reflected SDEs with two-sided barriers, subject to a regulated market. Similar prin-
ciples, concerning the evolution of stochastic diffusions in restrictive conditions, are applied
to population dynamic models as well (see [50, 51]). Furthermore, the reader is guided to
[52, 53] for other recent developments.

Related literature in biology deals with multi-cellular processes such that the micro-
scopic particles move in and out of channels (e.g. pores or nanopores) via the mechanism
called molecular translocation, where the molecule, pore and intermolecular interactions
have direct influence on the current. Empirical evidence shows that the speed of molecules
tend to decrease when they enter into the channels with entropic barriers. By defining chan-
nel transport as a chemical transition from one discrete state to another, [36] make use of
discrete stochastic models to investigate intermolecular interactions and molecular translo-
cation through nanopores, and find that particle currents display differing dynamics near the
entrance and the exit of a channel (see further discussions in [54, 55]).We also refer the reader
to recent studies in fluid mechanics dealing with near-wall dynamics and confined turbulent
flows (see [37, 56–59]) to shed further light as to how particles may show variations in their
behaviour as they draw closer to the walls of a confined geometry – an idea that overlaps with
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our work through the natural observation of piecewise-tunneled captives displaying varying
particle volatility as the diffusion approaches the exogenous walls of the tunnels.

In light of the existing literature that tends to focus on single state-spaces and usually a
single class of mean-reverting processes, our framework extends the insightful works above
by introducing the ability and flexibility of moulding the very topography of the underlying
system by splitting the state-space into multiple internal tunnels (or regimes) of almost any
length and shape, which enriches the domain with further complexity without forfeiting the
continuity and tractability of the model; a setup which standard models cannot address. This
gives the experimenter a useful platform to design sophisticated pipelines of varying consti-
tutions that would directly govern the evolution of the random diffusions within. Moreover,
by the generality in which the piecewise-tunneled captive diffusions are being defined, our
framework admits a much wider class of stochastic processes currently studied in the related
literature. This highlights the fact that the scope of piecewise-tunneled captives includes
such stochastic processes that may or may not be mean-reverting, potentially adding further
versatility to the design of experiments.

For our numerical setup, we denote {X̂tk }tk∈T as a discretized approximation of {Xt }t∈T
over 0 = t0 ≤ t1 ≤ . . . ≤ tp ≤= T < ∞ for some p ∈ N+. For the simulations below, we
use the Euler-Maruyama scheme

X̂tk+1 = X̂tk + μ
(
tk, �̂tk , X̂tk ; gtk

)
δ + σ

(
tk, �̂tk , X̂tk ; gtk

) (
Wtk+1 − Wtk

)
,

where X̂t0 = x0, δ = T /p and tk = kδ. Below, we choose T = 1 and p = 10000. We
construct three examples that belong to the mean-reverting family in Example 2.10 for a
parsimonious demonstration. Surely, the examples below are far from being exhaustive as
one can increase the complexity of models significantly using Definition 2.6.

3.1 Single Inner-Boundary

Consider a particle system that evolves stochastically inside a tube. An additional internal
boundary divides this tube into two smaller tunnels over a given (possibly shorter) time
frame. Assume that the random evolutions of the particles within this domain demonstrate
mean-reverting behaviour and the dynamics are influenced by the distance of particles to any
given wall. The mean-reversion in turn causes particles to reflect back from the walls with
which they collide. The SDE in (7) in Example 2.10 can model such a system, for which the
solution exists from Proposition 2.9.

Accordingly, we set m = 2 and fix {αt }t∈T = α, {κt }t∈T = κ as constants for parsimony.
The parameter α quantifies the strength of the diffusion coefficient on the particle dynamics
and κ can be viewed as the strength of the mean-reversion. We also let the boundaries be
constant such that {g( j)

t }t∈T = c( j) where −∞ < c(0) < c(1) < c(2) < ∞ holds. As for the
time-segments, we already know that T(0) = T

(m) = T, so we need to specify T
(1) for the

running-time of the internal boundary and choose some 0 ≤ τ
(1)
start < τ

(1)
end ≤ T . The diffusion

coefficient is given by

σ
(
t, �t , Xt , ; gs

) = (c(0) − Xt )(c
(1) − Xt + Vt )(c

(2) − Xt ),

where {Vt }t∈T is a bounded continuous map such that Vt = 0 for t ∈ T
(1) – e.g. we choose

Vt = r1 ∗ (max(τ (1)
start − t, 0) − r2 ∗ max(t − τ

(1)
end), 0),
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for r1, r2 ∈ {−1, 1}. For the examples below, we shall choose r1 = 1 and r2 = −1. It remains
to model the drift coefficient μ, that controls the mean-reversion dynamics, given by

μ
(
t, �t , Xt ; gt

) = βt (�t ; gt ) − Xt ,

where we can write βt (�t ) = βt (X(0), . . . , Xτt ) as in Proposition 2.9. More explicitly, we
let {βt }t∈T take the form below:

βt (�t ; gt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(1) fort ∈ [0, τ (1)
start),

c(1) + c(2)−c(1)

2(τ (1)
end−τ

(1)
start)

(t − τ
(1)
start) fort ∈ [τ (1)

start, τ
(1)
end) ifXτ

(1)
start

≥ c(1),

c(1) − c(1)−c(0)

2(τ (1)
end−τ

(1)
start)

(t − τ
(1)
start) fort ∈ [τ (1)

start, τ
(1)
end) ifXτ

(1)
start

< c(1),

c(1)+c(2)

2 fort ∈ [τ (1)
end, T ] ifX

τ
(1)
start

≥ c(1),

c(0)+c(1)

2 fort ∈ [τ (1)
end, T ] ifX

τ
(1)
start

< c(1)

The function μ is bounded, continuous and satisfies properties 1. and 2. in Definition 2.6.
Also, {βt }t∈T can be represented as the sum of locally Lipschitz continuous functions

βt (�t ; gt ) = c(1)1
(
t ∈ [0, τ (1)

start)
)

+
(
c(1) + c(2) − c(1)

2(τ (1)
end − τ

(1)
start)

(t − τ
(1)
start)

)
1

(
t ∈ [τ (1)

startτ
(1)
end)

⋂
X

τ
(1)
start

≥ c(1)
)

+
(
c(1) − c(1) − c(0)

2(τ (1)
end − τ

(1)
start)

(t − τ
(1)
start)

)
1

(
t ∈ [τ (1)

start, τ
(1)
end)

⋂
X

τ
(1)
start

< c(1)
)

+
(
c(1) + c(2)

2

)
1

(
t ∈ [τ (1)

end, T ]
⋂

X
τ

(1)
start

≥ c(1)
)

+
(
c(0) + c(1)

2

)
1

(
t ∈ [τ (1)

end, T ]
⋂

X
τ

(1)
start

< c(1)
)

,

where each element is associated to the indicator function 1(.) as above, and hence, {βt }t∈T
is locally Lipschitz continuous with respect to the elements of �. We now have an explicit
model for a piecewise-tunneled captive process with reflecting boundaries. Figure 1 below
provides four sample paths of four particles that follow the aforementioned dynamics.

We see in Fig. 1 that whenever a particle enters one of the two internal tunnels, it remains
in that tunnel until it leaves that tunnel to move more freely again, while still remaining
within the master boundaries. For example, in the top-left panel, three of the particles find
themselves within the upper corridor and the remaining one evolves within the lower corridor
until the tunnels open up again. On the other hand, in the bottom-right panel, two particles
evolve within the upper corridor and the other two evolve within the lower corridor.

In each panel, whenever any particle hits any of the walls, it is reflected back. We can
surely move the time-location of the tunnels by changing τ

(1)
start and τ

(1)
end, as shown below.

If the proposed captive process is used to model fluid flows within the given geometry
above in Fig. 2, we can interpret the simulations such that on the left, we see a transition from

123



12 Page 16 of 27 L. A. Mengütürk, M. C. Mengütürk

Fig. 1 Here, α = 1, κ = 2, c(0) = 0, c(1) = 2, c(2) = 4, τ (1)
start = 1500, τ (1)

end = 8500, x0 = 2

Fig. 2 Left: τ (1)
start = 0, τ (1)

end = 5000, x0 = 2.5, Right: τ (1)
start = 3000, τ (1)

end = 10000, Right: x0 = 1

a laminar flow to a turbulent flow as the tunnel opens up, and on the right, vice versa—here,
the particles tend to behave in amore volatile manner when they evolve outside of the internal
tunnels.

In fluid dynamics, we can use {μ (
t, �t , Xt ; gt

)}t∈T to govern the average characteristic
of the flow (e.g. velocity, viscosity) and {σ (

t, �t , Xt ; gt
)}t∈T the fluctuations, whereby the

ratio μ/σ drives the prevailing behaviour of the fluid in a flow regime at any given time. The
decomposition viaμ-to-σ can also relate to the behaviourwhere the turbulent flowdisappears,
if momentarily, at boundaries to let the fluid be solely governed by the laminar flow at
those same boundary points. Through {μ (

t, �t , Xt ; gt
)}t∈T and {σ (

t, �t , Xt ; gt
)}t∈T, the

interplay between different flow types and their transitions can be modified dynamically with
respect to the geometry of the tunnels—e.g. by increasing or decreasingμ and σ after hitting
a boundary, or entering a corridor.
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3.2 Multiple Inner-Boundaries

Consider a similar particle system as before, but now, instead of having a single inner bound-
ary, we have two inner boundaries that appear over different time horizons and different
spatial positions within the master domain. This system is already more complex since the
particles are being internally channeled into different spatial coordinates at different times
creating an increasingly multi-layered state-space – yet, the SDE in (7) in Example 2.10 can
still address this additional complexity, where we now set m = 3.

We fix each boundary {g( j)
t }t∈T = c( j) for j = 0, 1, 2, 3 as constants, satisfying

−∞ < c(0) < c(1) < c(2) < c(3) < ∞.

For the corresponding time-segments, we additionally need to specify T
(2) for the running-

time of the second internal boundary, which we choose as

τ
(1)
end < τ

(2)
start < τ

(2)
end ≤ T .

Hence, the second internal boundary appears only after the first internal boundary ends, and
divides the main tube into two tunnels back again over that non-overlapping time horizon.
Now our diffusion coefficient takes the following form:

σ
(
t, �t , Xt , ; gs

) = (c(0) − Xt )(c
(1) − Xt + Vt )(c

(2) − Xt + Vt )(c
(3) − Xt ),

where {Vt }t∈T is continuous with Vt = 0 for t ∈ T
(1) and t ∈ T

(2).
Finally, we choose {βt }t∈T where βt (�t ) = βt (X(0), . . . , Xτt ). As such, we define it as

βt (�t ; gt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c(1) fort ∈ [0, τ (1)
start),

c(1) + c(3)−c(1)

2(τ (1)
end−τ

(1)
start)

(t − τ
(1)
start) fort ∈ [τ (1)

start, τ
(1)
end) ifXτ

(1)
start

≥ c(1),

c(1) − c(1)−c(0)

2(τ (1)
end−τ

(1)
start)

(t − τ
(1)
start) fort ∈ [τ (1)

start, τ
(1)
end) ifXτ

(1)
start

< c(1),

c(1)+c(3)

2 fort ∈ [τ (1)
end, τ

(2)
start) ifXτ

(1)
start

≥ c(1),

c(0)+c(1)

2 + 2c(2)−(c(0)+c(1))

2(τ (2)
start−τ

(1)
end)

(t − τ
(1)
end) fort ∈ [τ (1)

end, τ
(2)
start) ifXτ

(1)
start

< c(1),

c(2) + c(3)−c(2)

2(τ (2)
end−τ

(2)
start)

(t − τ
(2)
start) fort ∈ [τ (2)

start, τ
(2)
end) ifXτ

(2)
start

≥ c(2),

c(2) − c(2)−c(1)

2(τ (2)
end−τ

(2)
start)

(t − τ
(2)
start) fort ∈ [τ (2)

start, τ
(2)
end) ifXτ

(2)
start

< c(2),

c(2)+c(3)

2 fort ∈ [τ (2)
end, T ] ifX

τ
(2)
start

≥ c(2),

c(1)+c(2)

2 fort ∈ [τ (2)
end, T ] ifX

τ
(2)
start

< c(2),

where μ
(
t, �t , Xt ; gt

) = βt (�t ; gt ) − Xt for t ∈ T, which gives us what we need for our
simulation.

123



12 Page 18 of 27 L. A. Mengütürk, M. C. Mengütürk

Fig. 3 τ
(1)
start = 1000, τ (1)

end = 4000, τ (2)
start = 5000, τ (2)

end = 9500. Left: x0 = 1, 2.5, Right: x0 = 2.5, 3.5

Compared to our previous example, since we now have more internal tunnels forming the
bifurcated geometry as the state-space of the particle system, the processes demonstrate more
diverse tunneling effects, which can be observed in Fig. 3.

3.3 Flows in Concentric Circular Domains

We keep m = 3, where {g( j)
t }t∈T = c( j) with 0 ≤ c(0) < c(1) < c(2) < c(3) < ∞. For

the time-segments, we now set T(0) = T
(1) = T

(2) = T
(4) = T; that is, τ

( j)
start = 0 and

τ
( j)
end = T for j = 0, 1, 2, 3. Before the mathematical details, we shall first provide some
samples below.

This example can be used in modelling particle systems evolving within ring-shaped
geometries. Due to the way tunnels are constructed here, polar projections can never cross
paths. Hence, if they represent fluid flows, they are separated in their respective corridors.

As for the mathematical model behind the samples in Fig. 4., we consider the following
captives: {X (k,l)

t }t∈T for k, l ∈ {1, 2}, where

dX (1,1)
t =

(
c(0) + c(1)

2
− X (1,1)

t

)
dt + (c(0) − X (1,1)

t )(c(1) − X (1,1)
t ) dW (1,1)

t ,withX (1,1)
t ∈ [c(0), c(1))

dX (1,2)
t =

(
π − X (1,2)

t

)
dt − X (1,2)

t (2π − X (1,2)
t ) dW (1,2)

t ,withX (1,2)
t ∈ [0, 2π)

dX (2,1)
t =

(
c(2) + c(3)

2
− X (2,1)

t

)
dt + (c(2) − X (2,1)

t )(c(3) − X (2,1)
t ) dW (2,1)

t ,withX (2,1)
t ∈ [c(2), c(3))

dX (2,2)
t =

(
π − X (2,2)

t

)
dt − X (2,2)

t (2π − X (2,2)
t ) dW (2,2)

t ,withX (2,2)
t ∈ [0, 2π),
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Fig. 4 Radius = 4. Top-Left: {c(0), c(1)} = {1, 2}, {c(2), c(3)} = {2.5, 3.5}. Top-Right: {c(0), c(1)} =
{0, 0.5}, {c(2), c(3)} = {1, 4}. Bottom-Left: {c(0), c(1)} = {0.5, 3}, {c(2), c(3)} = {3.5, 4}. Bottom-Right:
{c(0), c(1)} = {0, 0.5}, {c(2), c(3)} = {3.5, 4}

given that {W (k,l)
t }t∈T are (P, {F X

t })-Brownian motions for k, l ∈ {1, 2}. Using the captives

above, we construct the following paired processes {P(k)
t }t∈T given by:

P(k)
t = (X (k,1)

t , X (k,2)
t ),

for k = 1, 2 and project them on the polar coordinate system, such that {X (k,1)
t }t∈T models

the distance from the origin and {X (k,2)
t }t∈T is the radian. Thus, if r ≥ c(3) is the radius of

our circular domain, we can choose c( j) in such ways that the paired-processes {P(k)
t }t∈T

evolve over non-overlapping concentric circles within that domain.
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4 Further Extensions

4.1 Multivariate Systems

We shall construct a multivariate setup that enables us to model interacting particle systems
where each particle is a piecewise-tunneled captive process. As such, we introduce the Rn-
valuedmapX : C(T×R

n) → R
n written as {Xt }t∈T, whereXt = [X (1)

t , . . . , X (i)
t , . . . , X (n)

t ]
for some n ∈ N+. To specify a value for the i th coordinate, we write

Xt [i; x] � [X (1)
t , . . . , x, . . . , X (n)

t ],
for any i = 1, . . . , n. We now work with T

(i, j) ⊆ T for j = 0 . . . ,m(i) an i = 1 . . . , n,
where m(i) highlights that the number of time-segments across each coordinate i of {Xt }t∈T
may be different; hence, there are n + ∑n

i=1 m
(i) time-segments in the system. Similar to

before, we define

T
(i, j) = [τ (i, j)

start , τ
(i, j)
end ]with0 ≤ τ

(i, j)
start < τ

(i, j)
end ≤ T ,

wherewe setT(i,0) = T
(i,m(i)) = T for all i = 1 . . . , n. Accordingly, we associate a boundary

function to each time-segment, which we collect in

Gt = {g(i, j)
t : j = 0, . . . ,m(i) & i = 1, . . . , n}.

Here, it should be understood that g(i,0) ∈ G̃(l), g(i,m(i)) ∈ G̃(u) for all i = 1, . . . , n and
g(i, j) ∈ G for any i, j if j �= 0 and j �= m(i) whenm(i) > 1. Finally, our monitoring process
{� t }t∈T is given by the following:

� t =
n⋃

i=1

�
(i)
t ,

where each component is a random compact set defined as

�
(i)
t =

{
X (i)

τ
(i, j)
start

: τ
(i, j)
start ≤ t, for j = 0, . . . ,m(i)

}
fori = 1, . . . , n.

The notion of measurability and continuity for �
(i)
t for each i = 1, . . . , n, and in turn

� t , should be understood as discussed in Sect. 2. In this extended setup, our multivariate
piecewise-tunneled captive process {Xt }t∈T is governed by the following system of SDEs
associated to each of its coordinates:

X (i)
t = x (i)

0 +
∫ t

0
μ(i) (s,�s, Xs;Gs) ds +

∫ t

0
σ (i) (s,�s, Xs;Gs) dM

(i)
s ,

with X (i)
0 = x (i)

0 ∈ [g(i,0)
0 , g(i,m(i))

0 ), where μ(i) and σ (i) are continuous maps such that

1. μ(i)
(
t,� t ,Xt [i; g(i, j)

t− ];Gt

)
≥ dg(i, j)

+ (t)/dt + �g(i, j)
t if X (i)

τ
(i, j)
start

≥ g(i, j)

τ
(i, j)
start

, for any t ∈
T

(i, j) where X (i)
t− = g(i, j)

t−
2. μ(i)

(
t,� t ,Xt [i; g(i, j)

t− ];Gt

)
≤ dg(i, j)

+ (t)/dt + �g(i, j)
t if X (i)

τ
(i, j)
start

< g(i, j)

τ
(i, j)
start

, for any t ∈
T

(i, j) where X (i)
t− = g(i, j)

t−
3. σ (i)

(
t,� t ,Xt [i; g(i, j)

t− ];Gt

)
= 0, for any t ∈ T

(i, j) where X (i)
t− = g(i, j)

t−
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for every j = 0, . . . ,m(i) and i = 1, . . . , n, where {M t }t∈T ∈ M(T × R
n). Then, we have

the following result that gives the captivity property of {Xt }t∈T.
Proposition 4.1 The following hold P-almost-surely:

1. If X (i)

τ
(i, j)
start

≥ g(i, j)

τ
(i, j)
start

then X (i)
t ≥ g(i, j)

t for all t ∈ T
(i, j)

2. If X (i)

τ
(i, j)
start

< g(i, j)

τ
(i, j)
start

then X (i)
t ≤ g(i, j)

t for all t ∈ T
(i, j)/{τ (i, j)

start }
Since Proposition 4.1 follows from similar steps as in Proposition 2.8, we omit its proof.
As each coordinate is a piecewise-tunneled captive that can depend on other coordinates,
{Xt }t∈T allows one to integrate coupling or interaction effects between captive processes
over restricted domains.

4.2 Doubly-Path-Dependent Systems

Thus far, the path-dependency of {Xt }t∈T (or {X t }t∈T in themultivariate case) has been solely
due to the monitoring process {�t }t∈T (or {� t }t∈T) appearing in the coefficients of the SDEs
that dynamically registers historic states of particles at corridor entry-times, which has been a
key aspect to ensure internal tunneling. The construction of our stochastic processes however
is flexible enough to embed a secondary layer of path-dependency into the captive dynamics
through functionals on the paths of {Xt }t∈T—for the rest, we shall keep the univariate case
for parsimony.

Our motivation arises from providing an alternative approach to model particle systems
where their behaviour is driven both by the current state and the memory of the trajectory
up to the present state. Note that although {�t }t∈T captures glimpses of memory at dis-
crete time points, it still does not account for the full historic path information. Systems
with memory appear in numerous areas such as open-system oscillators [60], Dirac particles
in electromagnetic fields [61], condensed matter dynamics in chemical physics [62], ther-
modynamics of materials [63, 64], media propogation with viscoelasticity [65], particles in
turbulent flow [59, 66] and econophysics [67, 68] to name a few. Below, we shall demonstrate
how our framework can address enrichedmemory effects in confined dynamics by leveraging
the deep structure of functional SDEs that communicate naturally with piecewise-tunneled
captive processes.

First, we shall on-board additional mathematical machinery. Until now, we have used the
notation Xt or X(t) to denote the value of X at time t ∈ T and {Xt }t∈T as the process. We
shall now introduce an additional notation to denote subsections of the paths of {Xt }t∈T as
follows:

X[0,t] = {Xs : 0 ≤ s ≤ t}.
Hence, X[0,t] is a collection of all the values of the process {Xt }t∈T from time 0 until time
t ≤ T , representing a part of a path of the process. Accordingly, XT denotes the full path
of the captive process over its entire lifetime. We shall now provide the following definition
(see, for example, [69]).

Definition 4.2 A non-anticipative functional on C(T × R) is a measurable map F : � → R

on the vector bundle

�T �
⋃
t∈T

C([0, t] × R).

As such, denote �[0,t] = C([0, t] × R) so that �T = ⋃
t∈T �[0,t].
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Note that the SDE (5) inDefinition 2.6 asks the piecewise-tunneled captive process {Xt }t∈T to
be continuous by imposing continuity conditions on the coefficientsμ and σ and by choosing
{Mt }t∈T ∈ M(T × R). Since the continuous-path property of {Xt }t∈T plays a key role in
our proofs of captivity (although we can envision discontinuous extensions), we shall make
sense of what it means for the functional F in Definition 4.2 to be continuous. As a start,
each �0,t can be equipped with the supremum norm ||.||∞. Since the paths in �T can be
of various lengths, a stopped-path approach is adopted in [70] to define the distance of such
paths under ||.||∞, based on a horizontal extension map

X[0,t] ∈ �[0,t] → X[0,t+{h}] ∈ �[0,t+h], (10)

where we have

X[0,t+{h}](u) =
{
X(u), for u ∈ [0, t]
X(t), for u ∈ (t, t + h],

for h ≥ 0. Hence, the path is stretched in the direction of time using the last value of the path
– this is the reason we use a special notation X[0,t+{h}] instead of X[0,t+h] in the context of
horizontal extension, since X[0,t+h] would be the actual realization of the path over [0, t +h]
instead of the stretched version of the path. Now, for another path X ′[0,t], a distance on �T

can be defined using the horizontal extension apparatus given by the following norm:

D∞(X[0,t], X ′[0,s]) = ||X[0,t+{s−t}] − X ′[0,s]||∞ + s − t

for t ≤ s, which we shall refer to as the Dupire metric. Thus, we can work on the metric
space (�T, D∞), and the continuity of a functional with respect to D∞(.) can be defined.
More specifically, from [70], we adopt the following definition.

Definition 4.3 Anon-anticipative functional F : �T → R is�-continuous at X[0,t] ∈ �[0,t],
if ∀ε > 0, ∃δ > 0 such that for all X ′[0,s] ∈ �T, we have

D∞(X[0,t], X ′[0,s]) < δ ⇒ |F(X[0,t]) − F(X ′[0,s])| < ε.

The functional F : �T → R is fully �-continuous if it is �-continuous at all X[0,t] ∈ �0,t .

For what follows, the space of non-anticipative functionals on�T that are fully�-continuous
as in Definition 4.3 and bounded (where we refer to [69] for the definition of boundedness-
preserving functionals) is denoted as Cb(�T).

Example 4.4 If F(X[0,t]) = max({Xs : 0 ≤ s ≤ t}), then F ∈ Cb(�T). Similarly, if
F(X[0,t]) = min({Xs : 0 ≤ s ≤ t}), then F ∈ Cb(�T).

Remark 4.5 Using the pathwise-regularity result in [69], if F ∈ Cb(�T), then {Zt }t∈T defined
by Zt = F(X[0,t]) is a continuous process, given that {Xt }t∈T is continuous.

We are now in the position to provide the following definition.

Definition 4.6 Keep the setup as above. Then, a doubly-path-dependent piecewise-tunneled
captive process {Xt }t∈T ∈ C(T × R) is the solution to an SDE governed by

Xt = x0 +
∫ t

0
μ

(
s, �s, F

(
X[0,s]

)
, Xs; gs

)
ds +

∫ t

0
σ

(
s, �s, H

(
X[0,s]

)
, Xs; gs

)
dMs,

(11)

with X0 = x0 ∈ [g(0)
0 , g(m)

0 ), where F, H ∈ Cb(�T), and μ and σ are continuous maps
satisfying
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1. μ
(
t, �t , F

(
X[0,t]

)
, g( j)

t− ; gt
)

≥ dg( j)
+ (t)/dt + �g( j)

t if X
τ

( j)
start

≥ g( j)

τ
( j)
start

, for any t ∈ T
( j)

where Xt− = g( j)
t−

2. μ
(
t, �t , F

(
X[0,t]

)
, g( j)

t− ; gt
)

≤ dg( j)
+ (t)/dt + �g( j)

t if X
τ

( j)
start

< g( j)

τ
( j)
start

, for any t ∈ T
( j)

where Xt− = g( j)
t−

3. σ
(
t, �t , F

(
X[0,t]

)
, g( j)

t− ; gt
)

= 0, for any t ∈ T
( j) where Xt− = g( j)

t−
for every j = 0, . . . ,m, where {Mt }t∈T ∈ M(T × R).

From Definition 4.6, we can prove the same captivity property as given in Proposition 2.8
(or Proposition 4.1 in the multivariate case). Such an extension opens up new avenues for
applications, where captive processes may have dynamic interactions with their historic
captive paths.

4.3 Doubly-Stochastic Systems

Thus far, we kept boundaries fairly arbitrary as long as they belong to G̃(l), G̃(u) or G. We
shall briefly discuss a doubly-stochastic system, whereby the internal tunneling boundaries
are randomlygenerated by a pure-jump stochastic processwith càdlàg paths andfinite activity.

Definition 4.7 Let {Pt }t∈T be an adapted pure-jump stochastic process, which produces the
internal tunnels whenever Pt ∈ (g(l)

t , g(u)
t ), given that g(l) ∈ G̃(l) and g(u) ∈ G̃(u) are the

lower and upper master boundaries, respectively.

Note that we cannot index master boundaries numerically as before, since we do not know
what m would be a priori. Moreover, since internal tunnels are now randomly generated,
we no longer have pre-defined T

( j)s associated to the internal tunnels as neither τ
( j)
start nor

τ
( j)
end are known in advance. If also the jump magnitudes of {Pt }t∈T are random, then we do
not even know where the tunnels would be located a priori. These additional complexities
from a doubly-stochastic framework make explicit constructions challenging. Nonetheless,
we shall produce an example of such a system below.

4.3.1 Random Tunnel Formation

Let {Pt }t∈T be a counting process such that �Pt ∈ {0, c} for some positive integer c > 0,
where P0 = g(l)

0 = g(l)
t = 0 for any t ∈ T. We also choose g(u) constant such that

{g(u)
t }t∈T = k ∗ c for some other integer k ≥ 2 so that if {Pt }t∈T jumps before T , there is at

least one internal tunnel boundary formed. We denote τ ( j) as the j th jump time of {Pt }t∈T
so that

T
( j) = [τ ( j), τ ( j+1))withτ ( j) < τ ( j+1), (12)

for j = 1, . . . – even if we do not know the jump times of {Pt }t∈T in advance, we know
that if there is a jump, it will be of size c, which helps to define the μ and σ of our {Xt }t∈T
in (5). On top of this, we need the jump times to be adapted to the filtration of {Xt }t∈T, so
that when a jump of {Pt }t∈T occurs, {Xt }t∈T is informed of this occurrence at that very time
– hence, we extend the SDE coefficients in (5) to include {Pt }t∈T such that τ ( j)s become
{F X

t }t∈T-stopping times:

Xt = x0 +
∫ t

0
μ

(
s, �s, Ps, Xs; gs

)
ds +

∫ t

0
σ

(
s, �s, Ps, Xs; gs

)
dMs .
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More specifically, we can choose some continuous function σ with zeros at {0, c, . . . , k}, and
let μ

(
t, �t , Pt , Xt ; gt

) = βt (�t , Pt ; gt ) − Xt as before, where for some small ε > 0, we
have the following function that extends as more stopping-times occur in the logic outlined
below:

βt (�t , Pt ; gt ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c fort ∈ [0, T ∧ τ (1)],

c − c(t−τ (1))

2(T−τ (1))
fort ∈ [τ (1), T ] ifXτ (1) < candτ (1) < T ,

c + c(t−τ (1))
2ε fort ∈ [τ (1), T ∧ τ (1) + ε] ifXτ (1) ≥ candτ (1) < T ,

3
2 c fort ∈ [τ (1) + ε, T ∧ τ (2)] ifXτ (1) ≥ candτ (2) ≤ T ,

3
2 c − c(t−τ (2))

2(T−τ (2))
fort ∈ [τ (2), T ] ifXτ (1) ≥ c, Xτ (2) < 3

2 candτ
(2) < T ,

3
2 c + c(t−τ (2))

2ε fort ∈ [τ (2), T ∧ τ (2) + ε] ifXτ (1) ≥ c, Xτ (2) ≥ 3
2 candτ

(2) < T ,

.

.

.

This function expands in the pattern above depending on {Pt }t∈T and what k ∗ c is. We have
to highlight that this function falls apart if there is a j where the following happens:

τ ( j+1) − τ ( j) < ε.

Therefore, unless {Pt }t∈T is a process where P(τ ( j+1) − τ ( j) < ε) = 0 for every j , this
example would work only for a subsample of all possible trajectories that {Pt }t∈T may take
where (τ ( j+1) − τ ( j)) > ε happens to hold. Hence, even for such a simple example, the
doubly-stochastic nature may block {Xt }t∈T to be a piecewise-tunneled captive process.
Therefore, in the example above, {Pt }t∈T needs to satisfy the following law:

P(Pt+ε − Pt > 0) = 0,

for all t ∈ T for a given ε > 0, so that {Xt }t∈T is a piecewise-tunneled captive process P-a.s.
We shall leave a more detailed account of such doubly-stochastic formations for future.

5 Conclusion

We introduced a new family of stochastic processes we call piecewise-tunneled captive pro-
cesses that extend the captive diffusions of [19] through path-dependent dynamics, which in
turn governs the process also to remainwithin internal tunnels.We believe that our framework
can be applied in modelling random flows in fluid dynamics and random particle systems
exposed to channeling effects.We constructed explicit examples and provided simulations for
demonstration. We also provided extensions to the framework to expand on new modelling
capabilities for applications.

This work can further be extended in several ways. Amongst several possible theoretical
investigations, distributions of the first hitting-times to boundaries (master and tunnels) of
various subclasses of piecewise-tunneled captive processes can be studied. On the other hand,
calibration studies based on empirical data would be useful and insightful. Accordingly, one
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can continue with approximating the distribution of finding a particle in any possible corridor
at any given time by sampling a large number of paths under a calibrated model. In practice,
one can also formulate stochastic control problems whereby one aims to design optimal
tunnels to maximize corresponding objectives (e.g. in fluid dynamics). In addition, these
processes can also be utilized in constructing Hermitian-valued evolutions that are captive
under the Loewner-order in the spirit of [23] to model stochastic covariance structures that
may be ‘tunneled’ with respect to different regimes.
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