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ABSTRACT Wide Area Motion Imagery (WAMI) yields high resolution images with a large number of
extremely small objects. Target objects have large spatial displacements throughout consecutive frames. This
nature of WAMI images makes object tracking and detection challenging. In this paper, we present our deep
neural network-based combined object detection and tracking model, namely, Heat Map Network (HM-
Net). HM-Net is significantly faster than state-of-the-art frame differencing and background subtraction-
based methods, without compromising detection and tracking performances. HM-Net follows object center-
based joint detection and tracking paradigm. Simple heat map-based predictions support unlimited number
of simultaneous detections. The proposed method uses two consecutive frames and the object detection
heat map obtained from the previous frame as input, which helps HM-Net monitor spatio-temporal changes
between frames and keep track of previously predicted objects. Although reuse of prior object detection
heat map acts as a vital feedback-based memory element, it can lead to unintended surge of false positive
detections. To increase robustness of the method against false positives and to eliminate low confidence
detections, HM-Net employs novel feedback filters and advanced data augmentations. HM-Net outperforms
state-of-the-art WAMI moving object detection and tracking methods on WPAFB dataset with its 96.2%
F1 and 94.4% mAP detection scores, while achieving 61.8% mAP tracking score on the same dataset. This
performance corresponds to an improvement of 2.1% for F1, 6.1% for mAP scores on detection, and 9.5%
for mAP score on tracking over state-of-the-art.

INDEX TERMS Deep neural networks, object detection, tracking, wide area motion imagery.

I. INTRODUCTION
Object detection and tracking are broad and active subfields
of computer vision. Recent improvements in deep neural
networks and hardware capabilities have attracted more
attention to these fields. Object detection and tracking
applications on Wide Area Motion Imagery (WAMI) have
had its share of the attention, and today it still holds its
place as a challenging computer vision task. WAMI deals
with monitoring a large area, which is several kilometers
in diameter, with an airborne sensor consisting of multiple
cameras. Captured frames from cameras are stitched to
obtain a high-resolution image of the target area. Generally,
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a registration algorithm is applied to consecutive images to
compensate for the camera motion. Object detection and
tracking with WAMI have numerous applications in both
civilian and military domains [1]–[4]. Traffic monitoring,
driver behavior analysis, disaster response, and wildlife
protection are just some examples in civilian domain.
Military domain applications include intelligence-gathering,
reconnaissance, border security, and surveillance.

Unmanned Aerial Vehicles (UAV) and WAMI sensors
became more accessible in recent years. As a result of that
trend, demand for robust detection and tracking algorithm for
wide-area surveillance is constantly increasing.

Object detection in wide-area images has unique chal-
lenges compared to regular object detection [1], [6], [7].
Although wide-area images have higher resolution, since the
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FIGURE 1. A frame from a WAMI footage [5] is magnified to show a vehicle location.

area represented by a single image is large, each target object
is tiny (see Fig. 1) compared to normal object detection
targets [1], [7]. Smaller target objects result in fewer features
to exploit by the detection algorithm. Usually, WAMI sensors
collect grayscale images, and that one channel input yields
less information compared to three-channel RGB input.
WAMI sensor can capture several thousand objects within a
single frame due to high camera point of view, unlike regular
video feeds, which are used in regular object detection. Also,
ratio of combined pixel area of the objects to total image area
is respectively smaller in WAMI. Ground truth information
typically contains just center coordinates of objects; other
necessary properties for supervised learning like object size
and orientation are not provided. From object tracking
perspective WAMI introduces large object displacements
between consecutive frames and nearly none of the moving
objects intersect with their appearances on previous frames.
These large displacement vectors are due to slow frame
update rate and the high speed of moving vehicles. Overall,
a WAMI object tracker should detect and track high number
of small objects which carry less appearance information and
move very large distances between consecutive frames.

In order to address these existing challenges, we propose
a deep neural network-based combined object detector and
tracker architecture. Our method represents object locations
as a heat map, where each object is represented as a 2D
Gaussian placed on its center coordinate. By using center-
based object detection we eliminate the need for bounding
boxes, which are typically not provided by the WAMI
datasets. Our method uses temporal information alongside
appearance information to get better detection and tracking
results.We use the previous frame alongside the current frame
as input to our algorithm. Also, we use a feedback loop that
feeds the filtered previous heat map as input. Ourmethod uses

deep neural network backboneHM-Net (HeatMapNetwork),
which is specially built and trained for this task. HM-Net
employs multiple separate encoders for each input to help
model focus on each input independently and then fuses
separately extracted features to reduce memory footprint and
computational complexity of the model. HM-Net introduces
shortcuts between layers and several activation adder blocks
to increase overall model connectivity. One-stage nature of
the model yields remarkable throughput rate compared to
most state-of-the-art algorithms.

Our model training and feedback procedures are designed
to address unique challenges of the WAMI object detection
and tracking tasks. For more efficient feedback process and to
increase detection performance, elimination of false positives
is essential. False positive centers tend to accumulate on
heat maps; when the network uses the previous predicted
heat map as input, these false detection clusters have
tendency to propagate and grow after several feedback cycles.
To eliminate false positive propagation during inference,
we apply several novel training techniques. In model training
we adopt new data augmentation strategies to simulate
false positive clusters and false confidence amplifications
on feedback heat maps. These measures are taken to
make our model learn the challenging real-life situations
on feedback process. Also we use class based selective
filtering and rendering algorithm to eliminate potential false
positives or low confidence detections during inference. As a
result of these novel features we have achieved state-of-
the-art performance on both WAMI-based object detection
and tracking, and our method is several times faster than
recent WAMI detection and tracking algorithms. Our key
contributions are:
• One-stage HM-Net deep neural network architecture for
joint object detection and tracking. HM-Net does not
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need background subtraction or any other preprocessing,
is relatively faster than state-of-the-art WAMI detection
algorithms and detects both moving and stationary
targets with high accuracy.

• Introduction of Selective Gaussian Reconstruction
(SGR) filter. SGR filter is applied during heat map
feedback process. SGR aims to reduce false positive
propagation error caused by the feedback loop by using
two different mechanisms: 1) Class based confidence
thresholding to eliminate low confidence detections
2) Confidence amplification for a high confidence
detection to avoid potential false positives in its vicinity
on the predicted heat map.

• Novel data augmentation techniques for training: Ran-
domized Confidence Reduction (RCR) and Random-
ized Center Propagation (RCP) are designed for the
training process to eliminate vanishing confidence
and false positive propagation that is observed during
inference.

In Section II state-of-the-art approaches are analyzed for
their strengths and weaknesses. Section III explains our com-
bined detection and tracking algorithm in detail. Tracking and
detection performance of our approach is compared against
state-of-the-art models in Section IV. Finally, conclusions
and future research are listed in Section V.

II. RELATED WORK
WAMI-based object detection can be classified as spatial,
temporal, and spatio-temporal methods according to which
information is mostly utilized for detection. Since a complete
object tracker has to detect objects for tracking, discussion
will be mostly towards the state-of-the-art detection models
and their related tracking applications in this section. Regular
object detection and tracking tasks are mainly follow objects,
which are closer to the are that the camera focuses. Those
objects occupy large portions of the image and have more
spatial features to exploit during detection and tracking.
State-of-the-art detection algorithms [8]–[16] heavily rely
on the appearance information of those objects. Since,
on WAMI, objects are smaller, less detailed, and occupy less
total area on the image, regular detection algorithms are likely
to fail in detect target objects.

State-of-the-art single object and Multi-Object Track-
ing (MOT) algorithms [17]–[21] are mostly built on tracking-
by-detection paradigm or joint detection and tracking
paradigm. Hence, these tracking algorithms inherit problems
related to their object detection backbones. In tracking-by-
detection approach, most trackers [17], [18], [20] utilize
intersections of the detections between consecutive frames
for tracking. Although object re-identification (ID transfer)
with intersections yields decent results in high proximity (reg-
ular) target objects, which have less displacement throughout
time, on WAMI nearly none of the moving objects have
any intersection throughout consecutive appearances due to
the low frame rate. An alternative paradigm to tracking-
by-detection is joint detection and tracking, which is used

by [19], [21], [22]. In joint detection and tracking, detection
model supports tracking algorithm with extra information
such as future or previous locations prediction of detected
objects to ease target identity transfer. Joint algorithms are
more resilient to distortions on inputs and give better results
in tracking targets with extreme displacements that yield no
appearance overlap.

State-of-the-art WAMI object detectors take advantage of
the temporal changes in a video sequence. When consecutive
images are registered (each pixel corresponds to the same
location on each image) moving objects will change pixel
values around its location in an ideal scenario. Background
subtraction and consecutive frame differencing are main
approaches to detect temporal differences, but have their
challenges. Background subtraction-based algorithms [6],
[23]–[27] use registered video frames to build a background
model. From each frame, the algorithm subtracts the
modeled background to detect changes and hence finds
objects. Background subtraction-based detection can be
used solely on moving objects and cannot detect stationary
objects. Even slow objects can cause detection problems.
Parallax effect, stitching artifacts, illumination variations
(see Fig. 2) between frames, and minor frame registration
problems will lead to false detections. Construction of the
background model also takes several frames and increases
algorithmic complexity and memory utilization. Frame
differencing-based methods [28]–[32] also rely on registered
images to detect motion. Unlike background subtraction,
frame differencing-based methods rely on fewer consecutive
images. These methods use pixel-wise intensity variations
between several consecutive frames (generally 2-3). Frame
differencingmethods suffer from similar problemswith back-
ground subtraction. Both algorithms need perfect stitching,
stable global illumination, and ideal frame registration for
successful detections. Any distortion will lead to a significant
number of false detections.

Recent approaches for object detection on WAMI (see
Table 1) mostly use motion and appearance information
together. This information fusion is generally done with
Convolutional Neural Networks (CNN). As discussed above
motion-based approaches give false detections due to stitch-
ing artifacts, registration errors and sudden pixel illumination
changes. To filter false detections [33] utilizes a CNN post-
processing module. Although CNN-based filtering decreases
number of false detections, addition of a deep neural network
on top of an already computationally expensive background
subtraction algorithm decreases overall speed. As discussed
above, regular object detection algorithms rely on just spatial
information and do not perform well on WAMI. Modified
versions of deep object detectors [1], [7], [34]–[36] use
temporal information to increase overall detection success in
both regular detection and WAMI scenarios. These models
propose alternative ways to eliminate costly preprocessing
methods, i.e. background subtraction and frame differenc-
ing. [34] and [36] use 3D CNN and stacked video frames
for utilizing temporal information. [35] proposes a CNN
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FIGURE 2. A stitching artifact example, which occurs due to different illumination levels of stitched images on the left.
Differences between two consecutive registered frames are shown on the right. Error map shows unintended shifts during
registration.

TABLE 1. Summary of WAMI detection and tracking methods in literature.

that uses separate stacks carrying video frames and optical
flow information. [37] proposes object tracking and trajectory
calculation boost to object detection by including long

short-term memory sub-network and optical flow guided
tracking algorithms. ClusterNet [1] uses a two-stage CNN
that utilizes FoveaNet [38]. CNN-based detection approach
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FIGURE 3. Input/Output (I/O) diagram of HM-Net.

enables ClusterNet [1] to detect stationary targets andmoving
objects simultaneously.

III. REGRESSION BASED DETECTION AND TRACKING
In this paper, we propose a deep neural network-based joint
detection and tracking algorithm for WAMI. Inspired by
center-based detection [11], [22], [39] and tracking [22]
algorithms, our model adopts an anchor-box free approach
using a heat map-based object localization. The model
uses a one-stage auto-encoder architecture HM-Net as the
backbone. Detection and tracking combined throughput
rate of the method is about 4.5 fps on a RTX2080Ti
11GB GPU for marked areas of interest (AOIs) in WPAFB
dataset [5]. For detecting and tracking moving objects,
we split objects into moving vehicle and stationary vehicle
classes. Separation of moving and stationary objects enables
model to learn certain transitions between classes and reduces
false positive detections caused by recently stopped objects.
(Solely moving objects are considered during performance
evaluation.)

Our method utilizes a center-based joint object detection
and tracking paradigm. HM-Net predicts object centers heat
map M̂ ∈ [0, 1]C×W×H (C : The number of object classes,
W : width of input image, H : height of input image), motion
heat map V̂ ∈ R2×W×H , and subpixel location refinement
heat map Ŝ ∈ [0, 1]2×W×H (see Fig. 3). These heat maps
hold predictions of object center locations (mi ∈ R2), motion
vectors (vi ∈ R2), and subpixel refinement of object locations

(si ∈ R2), respectively. Each heat map shares same width
and height dimensions with the input image I ∈ R3×W×H .
Object center points mi are represented with 2D Gaussian-
shaped peaks. Each predicted peak m̂i = (x̂i, ŷi) in Mc,:,:
indicates that there is an object center at coordinates (x̂i, ŷi)
and it belongs to class c. Instead of labeling just center
location with full confidence score of one, fitting a Gaussian
curve encourages generalization [22]. To render a Gaussian
peak around each object center mi on heat map M , we use
the rendering function R given in 1, such that Mc,:,: =

R({m0,m1 . . .mn}) [40]:

Rp({m0,m1 . . .mn}) = max
i

exp
(
−
(mi − p)2

2σ 2

)
(1)

where p ∈ R2 is any given position in the heat map, and σ
is a constant scale parameter that is determined by average
object size.

Local maxima of the predicted heat map M̂ yield the
integer coordinates of the pixels that hold the object centers.
To obtain vital subpixel locations, we use a separate precision
head to regress subpixel position of the center (si ∈ [0, 1]2):

si = mi − bmic (2)

A. DETECTION AND TRACKING
Object localization process is guided by the predicted center
location heat map M̂ . As mentioned above, each local
maximum p̂i of M̂c,:,: corresponds to the center of a detected
object with class c and a confidence value ŵi = M̂c,p̂i .
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FIGURE 4. A false positive propagation example and its evolution trough
time is shown within blue rectangle.

The center location acquisition from M̂ is done within
two steps: 1) Non-maxima suppression (NMS): max-pooling
operation with window size 15 × 15 is applied to ensure
adjacent high confidence pixels of a local maximum will not
be mistaken as another local maximum. 2) Class specific
threshold θc is applied to eliminate low confidence local
maximums. Points that pass thresholding are considered
as detected integer object locations. For subpixel center
locations HM-Net uses ŝi = Ŝp̂i prediction which yields
subpixel coordinates x̂i ∈ [0, 1], ŷi ∈ [0, 1] and ŝi = (x̂i, ŷi).
Finally integer and subpixel coordinate estimates are added
to yield exact object location predictions: m̂i = p̂i + ŝi.
To track objects through time, we utilize our network to

predict 2D motion vectors between consecutive frames using
the motion head of the network: v̂ = V̂p̂. Then, we organize
all predictions to represent objects during tracking as ô =
{m̂i, ŵi, v̂i, idi}Ni=0, where idi is the assigned distinct track
identity (ID) for each object. HM-Net uses ô(t−1) and
ô(t) detections for object re-identification. From ô(t) center
locations, m̂(t)

i and motion vector v̂i
(t) are utilized to predict

potential previous location b̂i = m̂(t)
i + v̂i

(t) of the object.
Detections in ô(t−1) that are within an acceptable distance
κ around b̂i are marked as potential matches (where κ a
constant scale parameter that is determined by average object
size). These marked detections in ô(t−1) are matched with the
corresponding candidates in ô(t) according to their confidence
scores (ŵi) by using Hungarian Matching algorithm [41].
Associated objects’ tracking IDs are transferred from ô(t−1)

to ô(t).
During center matching if a center has no match in the

previous frame, we assume that center represents a new object
and we generate a new ID for that object. For unmatched prior
IDs, we keep suchmoving objects in a separate set, in case the
object have stopped momentarily and classified as stationary
or the object confidence is temporarily below the detection
threshold. These object tracks could be re-activated in the
upcoming frames if a high confidence match is found. Due
to the fast motion characteristics of objects in WAMI, this re-
identification of a passive track is only possible in the next
frame.

Reuse of previous detections via feedback input holds an
important place during tracking. Center-based trackers [19],
[22] exploit the Gaussian-shaped object representation during
feedback process. They render all detection information

into one channel heat map and use it as feedback. This
feedback loop gives the prediction network further temporal
information. Although feedback loop adds a short-termmem-
ory element to the network, it yields several problems like
false-positive error propagation and vanishing or exploding
confidence. False positives on a feedback heat map may lead
network to generate many less confident false positives that
are adjacent to each other. Early experiments revealed that
within several iterations, false detection clusters may occupy
a significant portion of the output (see Fig. 4).

Each detection has confidence score (between 0-1) deter-
mined by the local maximums on the predicted heat map.
During the feedback process prediction network may amplify
or suppress confidence of the detections. An effectively
trained network can eliminate potential false positives or false
negatives caused by feedback. Efficiency of training depends
on the coverage of corner cases like sudden illumination
changes within image due to stitching artifacts, minor image
registration errors, and problematic areas that can cause ID
switches between close objects like junctions etc. That is
why countermeasures are taken against these challenges not
only in feedback process but also during the training as well.
Training tecnniques will be discussed in detail on the model
training section.
Selective Gaussian Reconstruction (SGR): To tackle the

problems related to changing object confidences during
feedback loop, we design the SGR filter. Unlike simple
thresholding methods used by [19], [22] on one channel
feedback, we use a more complex filtering process with
multi-channel feedback. Hence, class information is also
provided during feedback by inputting the previous heat map
in its full dimensions (C × W × H ). For each class c,
we use two thresholds: λc to control which local maximums
will reappear on the filtered heat map; and θc to control
which maximums will be considered as true detections.
Extensive simulations show that class-specific thresholding
gives better results due to unique confidence distributions
of true positive detections in each class. Separation of
detection (θc) and filtering thresholds (λc) also helps the
network remember not only confident detections but also
local peaks that may become future detections. After deciding
which centers will be reconstructed on the heat map we
render each Gaussian peak with amplified confidence scores.
Confidence amplification factor (ϕc) is also class dependent.
Functionality of SGR filter is shown in 3, where ŵi is the
predicted confidence score of the local maximum and SGR
filtered result is represented with wi where θc > λc:

wi =


0 λc > ŵi
ŵi θc > ŵi > λc

ŵi × ϕc ŵi > θc

(3)

A sample heat map input and output of SGR filter are shown
in Fig. 5.

Algorithm 1 summarizes the major steps of the detection
and tracking process. At each time step HM-Net uses current
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FIGURE 5. An heat map prediction sample before the SGR filter on the
left, and after the SGR filter on the right.

Algorithm 1 Detection and Tracking Process

Input: Video Frames (I (t))
Output: Tracklets (ô(t))

1: for t ← 1 . . . Length of I do
2: M̂ , V̂ , Ŝ ← HM-Net(I (t), I (t−1), M̂ (t−1))
3: M̂ ← NMS(M̂ )
4: p̂, ĉ← Locate local maxima (where M̂c > λc )
5: ŵ← M̂ [ĉ, p̂], v̂← V̂ [:, p̂], ŝ← Ŝ[:, p̂]
6: m̂← p̂+ ŝ
7: ô(t)←TRACKER((m̂, ĉ, ŵ, v̂), ô(t−1), θ )
8: M̂ (t)

← SGR(p̂, ĉ,λ, θ ,ϕ)
9: end for

(I (t)) and previous (I (t−1)) frames alongside filtered previous
center heat map (M̂ (t−1)) to predict M̂ , V̂ , and Ŝ. Then
non-maxima suppression (NMS) is applied to M̂ to extract
local maxima. Local maxima are thresholded with λc to
determine detections on M̂ together with their class (ĉ) and
position (p̂) information. By using ĉ and p̂, confidence scores,
motion and precision vectors are extracted from predicted
heat maps. Precision vectors are used to update the center
position coordinates of detections. Extracted information and
detection threshold are sent to Tracker to get tracklets. At the
end of each time step SGR function is used to filter and render
the feedback heat map.

B. HM-NET ARCHITECTURE
Center-based detection and tracking necessitates the pre-
diction of large heat maps that contain location and class
information of centers. The heat map prediction is a regres-
sion task that can be handled using deep-learning models.
Overall heat map prediction task is similar to segmentation
and human pose estimation tasks. These tasks can be handled
using fully convolutional networks that produce output maps
with dimensions proportional to input images. We have
studied and tested several deep learning-based auto-encoder
networks that gave state-of-the-art results on different tasks
during development process of our own model, such as UNet
[42] and Stacked Hourglass [43] architectures, in order to
combine their strengths.

Although simple feed-forward deeper neural networks are
expected to give better results, real-life tests show that deeper

plain neural networks face vanishing gradient problem that
hinders shallow layers’ learning capability [44]. Shortcuts
between layers enable a more effective learning process for
deeper and connected neural networks to reach expected
high accuracy scores [44]. All examined architectures
introduce shortcuts between layers alongside feed-forward
path to increase connectivity. UNet architecture utilizes
activation transfer between encoder and decoder to increase
connectivity between distant layers. UNet uses concatenation
for activation transfer. Stacked Hourglass [43] architecture
uses summation operations between activations to ensure
connectivity. Summation operation is faster; however it
squeezes all activations into one. On the other hand,
concatenation process yields larger activations that increase
the volume of the network while preserving the information
in separate channels. In HM-Net architecture, we aim to
fuse these connection options for optimal trade-off between
accuracy and model complexity.

Detailed structural diagram of the HM-Net is shown
on Fig. 6. HM-Net architecture consists of two cascaded
auto-encoder sections which have several shortcuts between
modules. Model is designed as one-stage tracker and
detector. It can obtain matched predictions in one feed-
forward pass. One-stage nature of the architecture increases
overall throughput speed. Cascaded auto-encoders are used
to increase the depth of the model by facilitating deeper
bottleneck blocks while not using too much memory. Deeper
layers enable HM-Net to extract more complex features.

HM-Net takes two consecutive frames of input video
and SGR filtered version of previous heat map to exploit
temporal changes. Each input has a dedicated encoder for
feature extraction process. Each encoder has 4 consecutive
encoder blocks (Fig.7) and is followed by a deeper bottleneck
layer. The role of encoder blocks is to increase the depth
of activations (×2) while reducing channel dimensions to
decrease memory utilization. At the end of first encoder stage
separately extracted features are sent to 3 parallel bottleneck
blocks which are later fused into one bottleneck by using
summation operation, and fed through first stage decoder.
First stage decoder consists of 4 consecutive decoder blocks
(Fig.7). Second encoding and decoding modules have same
data flow pattern with their counterparts in first auto-encoder.
As Fig. 6 shows there are several shortcuts and activation
adder blocks that are introduced to increase connectivity.
Activation adder blocks simply calculate summations of
connected blocks’ outputs. The blue arrows in first stage
encoder represent summation of corresponding activations
coming from three separate encoder blocks (see Fig. 6).
Except for the first stage bottleneck activation adder block,
each adder block is followed by a concatenation operation
which concatenates the input activation of a decoder block
and the output of connected summation block. HM-Net has
three separate prediction heads to host predictions separately,
which are object center detection heat map head, precision
head, and motion vector head. All outputs have the same
width and height with the input image.
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FIGURE 6. The HM-Net architecture diagram with block legend.

FIGURE 7. Detailed representations of the model. The Encoder block (E), the Decoder block (D), the Bottleneck block (B) and the Head
block (H) are shown with their input (orange) and output (green) dimensions. Dimensions D ×W × H stand for depth, width and height. N
is configurable parameter for head output depth; for Precision and Motion heads N = 2 and for Centers Head N equals to number of
classes. Input depth 2D on encoder block is a result of concatenation based connections.

C. HM-NET TRAINING
WPAFB 2009 [5] dataset is used for both model training and
evaluation. WPAFB dataset consists of roughly 25, 000 ×
20, 000 grayscale stitched images with NITF format. In order
to reduce computational complexity, the given set of images
are downsampled by a factor of 2 to the average size of
12, 500 × 10, 000 pixels. We apply several preprocessing
steps to obtain training-ready images. Images are converted
to PNG format,and then a simple registration algorithm
is applied to compensate for the camera motion. The
training set consists of cropped versions images which have

544 × 960 dimensions. Smaller cropped training images
reduces computational complexity and memory footprint
during training. This enables usage of larger batch sizes
during training.

As stated in Section III-A, our model uses previous
image and output as feedback to exploit temporal and
spatial information together. During inference, the SGR filter
is applied on predicted heat map to improve prediction
performance. SGR filter yields a reconstructed feedback heat
map consisting of 2D Gaussian peaks according to their
predicted confidence values. During training, we have to
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simulate the actual feedback heat map of the model inference.
This simulation should be realistic enough to encourage
the model to learn corner cases that cause false positive
propagation, vanishing confidence and location precision
loss.

False positive propagation process is shown with three
heat maps in Fig. 4. At first glance distribution of predicted
confidence values have high variance and they are hard to
simulate realistically during training. For feedback simula-
tion in training, we use ground truth object centers of previous
image when constructing the heat map. Setting confidence
scores of ground truth objects as 1 does not lead to an effective
training. In our initial trials, confidence scores ŵi of fed-
back detections were observed to be varying around 0.6.
Since predictions during inference have varying confidence
scores, a randomized confidence generation method that can
simulate observed score variations is implemented for better
feedback simulation during model training.

SGR filter ensures that heat map outputs have varying
confidence scores but solid 2D Gaussian shapes as discussed
above. Solidified Gaussian curves are more imitable than
raw heat map outputs (see Fig.5). Our primary aim on
training is simulating SGR filtered feedback heat maps in
a realistic setup with several advanced data augmentations.
These augmentation methods, such as random location shift
and random center deletion, are key to increase generalization
capability and emulate model inference. Random confidence
reduction (RCR) method is applied on center confidences
to simulate more realistic confidence scores on a feedback
scenario. RCR applies up to 0.8 confidence reduction with
70% probability to each confidence ground truth wi. The
reduction factor and probability are set based on ablation
studies to maximize training performance.

False positive propagation problem is shown in Fig. 4.
Around one detection we see tree root shaped spreading false
detection clusters. To reduce the occurrence of this unwanted
situation we implement randomized center propagation
(RCP). During heat map simulation RCP picks random labels
and places several false detections around the ground truth to
simulate the propagation problem. RCP is also used to place
false positive object centers randomly on the feedback heat
map to teach our network how to eliminate all types of false
positive detections.

Data distributions among heat maps are imbalanced; in
other words Gaussian peaks cover very small portion of heat
maps. That is why we utilize a modified focal loss function
from [11], [22], [40], [45]. The loss LH is computed between
the ground truth heat mapMc,x,y and its prediction M̂c,x,y for
each class and at every pixel location:

LH = −
1
N

∑
c,x,y

f (Mc,x,y, M̂c,x,y) (4)

where

f (m, n)=

{
(1− n)α log(n), if m = 1
(1− m)β (n)α log(1− n), otherwise

(5)

FIGURE 8. Locations of cropped AOI’s in a complete WAMI frame.
Courtesy of [25].

TABLE 2. Size and location information of AOIs.

where N is the total count of labeled objects and hyper-
parameters of focal loss are set to α = 2, β = 4.

For learning motion vectors and subpixel center locations,
we use supervised linear loss (L1 loss):

Lx =
(
1
N

) N∑
i=1

|x̂i − xi| (6)

where xi is vi for motion vectors and xi is si for subpixel
locations. The weighted sum of those loss functions is
used during training. Weights are set by considering the
importance of the corresponding head while maintaining
training balance. For model optimization Adam optimizer is
used with a learning rate of 0.0013.Model training with batch
size 6 is concluded at 16th epoch to prevent overfitting.

IV. RESULTS AND DISCUSSIONS
In this section, first we discuss our detection and tracking
results, in comparison with state-of-the-art methods from
literature. Then an ablation study is presented to illustrate
the effects of hyper-parameters and novel data augmentation
methods on the detection and tracking performances.

A. EVALUATION OF DETECTION AND TRACKING
PERFOMANCE
Our tests are conducted on the WPAFB dataset [5] at
predetermined cropped AOIs (see Fig. 8 and Table 2).
A detection is considered as true positive when there is at
least one ground truth point within 10 pixels range and each

1354 VOLUME 10, 2022



H. Motorcu et al.: HM-Net: Regression Network for Object Center Detection and Tracking on WAMI

FIGURE 9. Visualization of true positives (yellow), false positives (green), and false negatives (magenta). High-resolution versions can be viewed at
https://sens.medipol.edu.tr/visionai-was/hm-net-detection-visual-results/.

TABLE 3. The detection performance (F1 scores) comparison table for six
AOIs of WPAFB dataset [47].

ground-truth point can only be assigned to one detection
(see [33]). Table 3 provides F1 scores for HM-Net and other
state-of-the-art object detectors from literature in 6 different
tested AOIs. HM-Net provides the highest F1 score in
5 regions and comes in second place for AOI 40. In Fig. 9
locations of true positive, false positive and false negative
detections are shown on two sample frames. As discussed
in Section III, HM-Net is trained to detect both moving and
stationary vehicles, which helps in reducing false moving
object detections. Stationary and moving vehicle detections
are visualized in Fig.13.

Table 4 provides precision and recall values for
HM-Net, [22] and [33]. (For training CenterTrack [22]
in WPAFB dataset, bounding box prediction head of the
architecture is ignored.) HM-Net is superior to [33] in all
tested regions. Precision values for [22] and HM-Net are
similar, but HM-Net is superior to [22] in terms of recall.

Table 5 compares the same three methods in terms mean
Average Precision (mAP), which corresponds to the area
under precision-recall curve as defined by object detection

TABLE 4. Comparison of average precision and recall values of [22]
and [33] with our results for the six AOIs.

evaluation procedures [46]. mAP is calculated for two
scenarios, by requiring either a maximum of 10 pixels
(d < 10) or 5 pixels (d < 5) distance between matching
detected and ground truth centers. Clearly, HM-Net surpasses
both [22] and [33] in all AOIs and the performance difference
is even more dramatic when d < 5 is required. [33]
fails to provide precise center coordinates for most of the
detected objects. While both HM-Net and CenterTrack [22]
produce accurate object centers, HM-Net produces more
precise centers due to the use of an extra Precision Head at
the network output. The average distance of detected centers
from ground truth coordinates is 1.8 pixels. Even though we
upscale predictions at the network output, we surpass [1]
and [33], which have average distances of 3.8 pixels and
roughly 2 pixels, respectively.

Table 6 compares the tracking accuracy of HM-Net against
CenterTrack (other methods could not be tested because
their tracking codes were not available). mAP for tracking
is evaluated as described in [46]. Tracks are sorted based on
their length, i.e. longer tracks are assigned higher confidence
and matched first. HM-Net provides significantly better track
matching accuracy than [22] in all AOIs. Simulation results
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TABLE 5. Comparison of mAPs (in percentage) of [22] and [33] with our
results for the six AOIs.

TABLE 6. Comparison of tracking performance for the six AOIs with
tracking mAP from [46].

FIGURE 10. Speed (fps) comparison of different methods on AOIs.

also show that HM-Net tracking IoU (Intersection over
Union) is significantly better than that of [22]. This means
that HM-Net tracks provide on average a longer overlap with
the ground truth tracks. This could also be seen by comparing
mAP results of both methods at 0.50 and 0.75 IoU, for which
HM-Net is far superior.

Fig. 10 provides inference speeds for HM-Net, [22]
and [33] in terms of fps for different AOIs on a RTX2080Ti
11GB GPU. HM-Net out-performs [33] in speed by roughly
7 times. Although HM-Net is about 30% slower than [22],
better detection and tracking results justify this slightly higher
execution times. Since both HM-Net and [22] algorithms
are faster than typical WAMI sensor frame rates, both
models could perform real-time object detection in a medium
resolution WAMI sequence.

In [33], the model utilizes background subtraction fol-
lowed by CNN-based false positive filtering from cropped
detection regions. As a result the model speed in [33] is
vulnerable to image size and total target count variations.
However, image size variations and tracking target count do
not much affect the inference speed of HM-Net, due to its

FIGURE 11. Effect of moving vehicle detection threshold (θc ) on model
accuracy.

FIGURE 12. Effect of NMS window size on model accuracy.

one-stage network, which processes whole inputs in a single
feed-forward pass.

B. ABLATION STUDY
In this section we investigate the effect of several hyper-
parameters on the model’s performance for object detection
and tracking. In our experiments we have tested various
combination of these parameters to see their effects on
overall model accuracy. Selected experiment samples will be
discussed below to evaluate the effects of detection threshold
(θc), combination of confidence boosting factor (ϕc) and feed-
back thresholding (λc), non maximum suppression (NMS)
window size, and RCP/RCR during training.

Figure 11 shows the detection performance with respect
to the detection threshold (θc). As seen from the figure,
detection threshold (θc) and recall scores of the model
are inversely correlated. Lower θc facilitates overall higher
number of detections, resulting in an increase in the number
of true positive detections at cost of more false positive
detections, thereby decreasing F1 and precision scores.
When θc is between 0.25 and 0.42 we observe a high
accuracy plateau in the figure, which shows that the model
performance is robust against changing detection threshold in
this range. We have used θc = 0.32 in all other experiments,
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FIGURE 13. Visualization of moving (green) and stationary (blue) objects. Behavior of the vehicles can be observed on a signalized junction.

since it is relatively at the center of the plateau and also yields
better scores on validation.

TABLE 7. Effect of feedback filtering threshold (λc ) and confidence
amplification factor (ϕc ) values on detection accuracy.

On Table 7 we can observe the effect of different λc
and ϕc combinations on F1, recall, and precision detection
scores, where all other parameters are fixed to their best
known values. The use of separate feedback filter and
detection thresholds is proposed to be able to represent
objects below the detection threshold on feedback heat maps
(see Section III). The motivation in keeping those objects
on the heat map is to encourage their reappearance as valid
object detections in upcoming frames. Note that ϕc = 1 and
λc = 0.32 on Table 7 corresponds to the base case where
there is no confidence boosting and no SGR filtering, i.e.
λc = θc. Lowering λc with respect to θc increases recall
and reduces precision, yet resulting in a higher overall F1
score. However, as λc is further reduced, the performance
starts to deteriorate. An optimal value of λc = 0.28 puts
on the feedback heatmap additional detections that have the
potential of reappearing in upcoming frames, and yet at same
time does not increase the number of false positive detections
overwhelmingly. Amplifying confidences of detected objects
on their feedback representations increases model precision
and F1 scores as well. The best combination of parameters
is at λc = 0.28 and ϕ = 1.2, which corresponds to a 1.2%
improvement in F1 score over the base case.

As discussed in Section III-A, NMS window size is crucial
for object detection and tracking operations. The primary
role of the window is to eliminate adjacent high confidence
scores close to the local maxima. However choosing the

optimal window is not a straightforward task. As Figure 5
shows the model does not yield perfect Gaussian shapes on
the center location predictions. A large window size ensures
the elimination of adjacent high confidence values that are
on the same object, but might also eliminate the centers of
other close by objects. On the other hand, for small window
sizes, nearby high confidence pixels that belong to the same
object can be misinterpreted as centers of separate objects.
Fig. 12 justifies these discussions. For smaller window sizes
we observe high number of false positives and a relatively
high recall score. As window size exceeds 11 × 11, the
model enters a steady high accuracy plateau. However F1
score starts to descend as window size exceeds 15× 15. This
negative trend for larger window sizes is a result of a slowing
decrease in false positives and fast increase in false negatives.
As a result, 15 × 15 is selected as NMS window size during
both detection and tracking operations. Note that this optimal
window size is in line with the 10-15 pixel vehicle length in
WPAFB dataset.

TABLE 8. Effect of RCP/RCR training methods on detection and tracking
accuracy.

Table 8 investigates the performance contributions of RCP
and RCR methods applied during training of the model.
Introduction of RCP and RCR aims to reduce false positive
detection count and give model a better simulation of the
feedback process during training (see Section III). Effect
of RCP and RCR is tested by comparing against a Base
Model that is completely identical but trained without RCP
and RCR data augmentations. Trained base model is tested
under identical testing conditions. Results are shown on
Table 8. Introduction of RCP and RCR increases model
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success in both detection and tracking.We observe significant
improvement in scores, especially for AOI-01 and AOI-40.
These AOIs have signalized busy intersections, which causes
vehicles to stop and move suddenly. Also intersections can
cause problems such as tracking id switches due to sharp
changes in vehicle headings. With the help of RCP and RCR
in training, the model learns to handle sudden transitions
between motion states of the vehicles and alterations in their
headings better than plainly trained version.

V. CONCLUSION AND FUTURE WORK
In this work, we have proposed a combined detection and
tracking method that utilizes center-based object detection
and tracking. Our method relies on our one-stage CNN
based architecture called HM-Net, which generates heat
maps of object center locations and object displacements
for detection and tracking tasks. Heat map-based approach
facilitates simultaneous detection of high and varying number
of objects with fast and stable speed. Our method uses both
current and previous frames and filtered previous predictions
as input to exploit spatio-temporal information. Novel model
training tools and feedback filters address existing problems
on the training and inference of heat map-based detectors,
and these methods increase overall model performance, while
reducing the number of false positive detections.

Our approach is significantly faster than frame differencing
and background subtraction-based state-of-the-art WAMI
detectors and yields compatible speed with one-stage coun-
terparts. HM-Net yields state-of-the-art results on simulations
conducted on WPAFB dataset [5] for detection and tracking
of moving vehicles. To improve the overall performance,
alterations in model architecture and their implications on
both tracking and detection performances will be further
examined.Currently HM-Net uses just a single prior frame
and single prior heatmap; utilizing a higher number of prior
frames and outputs will be investigated to increase overall
performance. A complex vehicle motion model, in the form
of a Kalman filter, could also be integrated to improve object
tracking accuracy. Model will also be improved to work with
larger resolution images that cover larger WAMI regions.
Also, MOT applications for aerial imagery at different
altitudes (i.e. drone videos) of HM-Net architecture will be
investigated as future work.
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