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1. Introduction 

Intersections are the critical facilities of traffic networks in terms of mobility and safety. In the US, nearly 67 
percent of fatal intersection crashes occur at unsignalized intersections [1]. In order to determine the effectiveness of 
various safety countermeasures or alternative operational scenarios, accurate models of such facilities are needed.  

The gap acceptance behavior is a crucial concept in the analysis of unsignalized intersections, where the driver on 
the low priority traffic stream encounters a series of time gaps within the higher priority traffic stream and decides 
whether to accept the gap and cross or reject and wait for the next gap. The decision-making process for gap 
acceptance is influenced by various factors such as traffic conditions, roadway geometry, vehicle type, driver 
characteristics, environmental conditions, etc. The definition of a gap within this context is the time interval between 
the arrivals of consecutive vehicles before an intersection in mainstream traffic. Thus, the traffic flow rate is a major 
factor impacting the gap acceptance process [2]-[5]. 

The relevant literature that focused on modelling and analysis of unsignalized intersections can be grouped into 
analytical and simulation-based approaches. In the analytical methods, the critical gap is a key parameter used in 
assessing the safety, delay, and capacity of a traffic stream [6]. The critical gap is defined as the minimum time 
headway in the mainstream traffic that provides a safe crossing for the minor-approach vehicles [7]. It is not possible 
to measure critical gap directly in practice, rather it can be estimated by analyzing the values of accepted and 
rejected gaps. According to the literature, variables such as driver, traffic, and trip characteristics, wait time, vehicle 
type and weather condition impact the estimation of critical gap [8]-[17]. Various methods were used to estimate the 
critical gap value. These methods include but not limited to Raff’s method, binary probit model, maximum 
likelihood method as well as approaches that apply various machine learning models such as Decision Tree, Random 
Forest, Support Vector Machine and so forth [10], [14]-[18]. Nevertheless, not all the estimation methods necessarily 
produce the same results [20]-[23]. For example, in a study conducted by Dutta and Ahmed [24], the logit method 
outperformed the clearing time method in terms of estimating the critical gap at a three-legged unsignalized 
intersection. In addition, Maurya et al. [23] indicated that the estimated critical gap value of the logit method was 
roughly 0.2 s longer than that of Raff’s method.  

As to the simulation-based approaches, high fidelity traffic simulation packages enable users to model and 
analyze complex traffic networks. The strength of a simulation model relies on its efficacy in simulating 
stochastically the driver and traffic interaction in the field condition. Even with the enhanced capability of simulation 
tools, performing an accurate simulation model is considered a challenging issue due to the complexities in human-
nature behavior and traffic flow dynamics. Thus, a validation and calibration process is required to accurately 
replicate the driver’s behavior (e.g., gap acceptance, lane changing, car following and route choice) using ground 
truth data [25]. The literature review indicates various studies working on calibrating/validating simulation models, 
effect of their results on decision-making process and evaluating impact of various design and operation alternatives 
[4], [26]-[31]. Moreover, the default underlying models in simulation tools often are developed based on some 
specific traffic condition and/or location which may not be generalized to other traffic situations. This necessitates 
the development of location-specific driving behavior models using comprehensive field data. For example, Bartin et 
al. [27] applied the binary probit model based on extensive field data to model the gap acceptance behavior of 
drivers in two unconventional traffic circles in New Jersey. They used the application programming interface (API) 
feature of Paramics simulation software, to replicate site-specific gap acceptance behavior of drivers, instead of the 
default gap acceptance model of Paramics. Their results were promising in terms of predicting accepted gap time 
using the probit model. Also, in another study, Bartin [28] applied the reinforcement learning approach to model the 
gap acceptance decisions of drivers using the same observed data that were used in [27]. The study indicated that the 
Q-learning reinforcement algorithm can yield high level of accuracy in terms of validation when simulating the gap 
acceptance behavior of drivers in a microscopic simulation model. In fact, machine learning methods in some cases 
outperform the statistical methods due to their ability to handle outliers and missing values as well as their 
independency from predefined correlations between exogenous and endogenous variables [32]. Nagalla et al. [33] 
investigated the left-turn gap acceptance decision at an unsignalized intersection using support vector machine 
(SVM), random forest (RF), and decision tree (DT) models. They showed that DT and SVM indicate considerably 
different results and the RF model was more robust than the DT and SVM models. Furthermore, simulation-based 
methods are more preferable and convenient than analytical methods, which require many efforts to collect field data 
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and process them for model development. Dutta and Ahmed [24] demonstrated that the difference between critical 
gaps obtained from the simulation and field data for both logit and clearing time methods is not more than 10 
percent. 

To that end, the objective of this study is to present the feasibility of applying an artificial neural network (ANN)-
based gap acceptance model in a microscopic traffic simulation, in which the drivers’ individual gap acceptance 
decision is represented without relying on the default mechanism provided in the simulation package. For this 
purpose, first an ANN is used as the state-action mapping function to train drivers for their gap acceptance, then the 
model is tested using the API feature of SUMO, a microscopic simulation tool, to check the compatibility of the 
simulation model with the field condition. The proposed approach is tested on the simulation model of a stop-
controlled intersection located at Collingwood traffic in New Jersey. The real-world data were collected and 
processed as part of the analyses presented in Bartin et al. [27].  

The outline of the paper is as follows. The next section presents the methodology of implementing the ANN-
based gap acceptance model using SUMO API. The case study, data collected, and analyses results are presented in 
section 3. Section 4 presents the conclusions and possible future work.  
2. Methodology 

The methodology used in this study is twofold. First, the ANN method was used to model drivers’ gap acceptance 
behavior based on the collected ground truth data. Second, a microscopic simulation model was developed to test the 
feasibility of implementing the ANN-based gap acceptance behavior in lieu of the default behavior embedded in the 
simulation package. The performance of this approach was tested by comparing the simulation outputs with those 
extracted from the ground-truth data. Two output variables were used for this purpose, namely, wait time at the 
intersection and accepted gaps. 

The application of ANN has expanded to a wide variety of disciplines including the transportation and traffic 
domain. ANN method is a good fit for modeling traffic with heterogenous drivers where their interaction is 
discontinuous, nonlinear and complex [34]. The main mechanism of ANN is to extract the underlying structure that 
relates explanatory variables to target variable from a set of sufficient real-world data. The application of ANN in 
transportation domain has been widely used during the last decades [35]-[40]. For example, Zheng et al. [41] used 
ANN to estimate the driver’s lane-changing behavior and compared it with the multi-nominal logit (MNL) model. 
They indicated that the ANN outperformed the MNL in terms of accuracy of estimating lane-changing samples. In 
another study, an ANN model was trained to replicate the driver’s car-following model using naturalistic driving 
data [42]. The results were compared with an alternative approach, Gazis-Herman-Rotery (GHR) model. The 
performance of ANN in capturing driver’s car-following behavior was higher than that of GHR model. To the best 
of the authors’ knowledge, the application of ANN has not been investigated in the gap acceptance decision context. 

2.1. Description of the ANN-Model  
A feedforward backpropagation neural network is utilized as the state-mapping function for predicting the 

driver’s decision. The training process is the adjustment of weights and bias by calculating the error between actual 
output action and predicted output action and propagating it back to each neuron in the network. This process is 
iterated until the weights between layers converge and the error propagation is minimized. The gradient descent 
algorithm acts as the learning rules to gradually estimate the driver decisions from the input and output data during 
the training episodes. The Keras library is used for developing and training the ANN model in Python.  

The ANN in the proposed model consists of five layers (an input layer, three hidden layers, and an output layer). 
The input layer includes four vectors containing: Time Headway (TH) or interarrival time of mainstream vehicles, 
type of vehicle at the minor approach (passenger car and truck), wait time of vehicle at the minor approach and the 
lane index of mainstream vehicles.  

The summation of bias and weighted inputs is the input of activation function in the next (hidden) layer. The 
activation function in all units of hidden layers is Rectified Linear Unit (ReLU). There are sixteen neurons in each 
hidden layer. The last layer is the output layer with only one neuron and sigmoid activation function. Based on a 
defined threshold, the ANN model predicts whether accept or reject the gap. The procedure concerning 
hyperparameter tuning and selecting a suitable architecture for the presented ANN model was accomplished by trial 
and error where the main objective was to obtain the maximum accuracy and minimum loss while controlling the 
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balance between bias and variance. The model was trained with 80% of data and validated with 20% of data. Binary 
Cross Entropy was used as loss function and Stochastic Gradient Descent as the optimizer with learning rate of 
0.005. The model was converged after 1760 epochs which resulted in an accuracy of 97%.  

2.2. Implementing the ANN-Model in SUMO 
To implement the ANN model, SUMO microscopic simulation software is utilized [43]. SUMO’s Application 

Programming Interface (API), known as TraCI (Traffic Control Interface), allows modelers to control the behavior 
of all simulation objects, adjust many of its default traffic models during the simulation as well as implement their 
own models instead of using underlying default traffic models.  

Fig. 1 The flowchart of decision-making process 

Fig. 1 presents the implementation of the ANN-based gap acceptance model at a stop-controlled intersection using 
SUMO TraCI. The average arrival rate of vehicles on the minor and major roads, the traffic composition on the 
minor and major roads, and the average speed of vehicles on major road are defined as the input data for the 
simulation. Any vehicle that enters the minor road receives a stop command and comes to a complete halt at the stop 
sign behind the intersection. At each time step (0.1 seconds) the model checks for any vehicle in the mainstream, if 
there is no vehicle, the subject vehicle is allowed to proceed and cross the intersection. Otherwise, it detects the 
leading vehicle on the approach link, determines its speed and distance from the intersection and calculates its arrival 
time to the intersection. Therefore, the probability of accepting gap for every major vehicle at each location and at 
each simulation time step is estimated based on the developed ANN model. This probability value is then compared 
with a uniformly generated random number between [0,1]: if the probability is greater than the random number the 
vehicle would accept the gap and cross the intersection otherwise it would reject the gap and wait for the next 
vehicle. 
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3. Case Study 

A stop-controlled intersection studied by Bartin et al. [27] was selected for the analyses used here. The selected 
intersection was part of the old design of Collingwood Circle in New Jersey, which was later redesigned as a modern 
roundabout. The raw field data borrowed from Bartin et al. [27] was processed for afternoon peak period, 3 pm to 5 
pm, to extract the variables used in the gap acceptance model. The extracted data include (1) vehicle counts with 
percentage distributions of trucks and passenger cars, (2) vehicle interarrival times at mainstream, (3) vehicle wait-
times before stop sign on minor road, (4) the lane index of vehicles at mainstream and (5) gap acceptance/rejection 
times at the stop sign. The accepted gap and average wait-time of observed data during the afternoon peak period are 
presented in Table 1.  

Three gap acceptance behavior models were compared. First is the default SUMO gap acceptance behavior. 
Second is the calibrated SUMO gap acceptance behavior. Third is the use of the proposed ANN-based gap 
acceptance behavior implemented in SUMO TraCI. 

The default gap acceptance mechanism embedded in SUMO is based on several parameters. These are maximum 
speed and deceleration of vehicles, wait time, impatience of drivers and minimum time gap when passing ahead of a 
prioritized vehicle. The detailed information on the default gap acceptance mechanism of SUMO can be found in 
[44]. To explain briefly, when a vehicle in low priority approach stops behind the intersection, it checks the high 
priority road for any approaching vehicle, then it decides to enter the intersection if the time difference between its 
expected arrival at the intersection and the expected arrival of the high priority vehicle to the intersection is greater 
than the minimum time gap i.e., critical gap. In addition, impatience is another factor that affects the decision-
making process. Vehicles with high impatience tend to enter the intersection aggressively without considering the 
right of way rules. This parameter has a direct relationship with the wait time, i.e., it increases while a vehicle is 
waiting to pass an intersection. SUMO allows users to customize the aforementioned parameters to calibrate the gap 
acceptance in the stop-controlled intersection.  

Two output variables were used for comparing the three gap acceptance models, namely wait time and accepted 
gap. Based on the central limit theorem, the sampling distributions of the output variables are based on a Gaussian 
distribution with unknown variances regardless of their initial distributions. The model was simulated with various 
20 seeds so that the model outputs achieved a 95% confidence interval with a relative error of 5%. To find the 95% 
confidence interval for the population mean with a Student’s t-distribution, the obtained values of the selected output 
variables were used. 

 Table 1 presents the observed statistics on wait time and acceptance gap, as well the 95% confidence interval for 
the outputs produced by SUMO default, SUMO calibrated and ANN-based models. In the calibrated SUMO, the 
default parameters were modified as part of the calibration process to obtain the closest output values to the observed 
outputs. It should be noted that the wait time shown in Table 1 do not include the queuing time. In addition, the 
runtime is the time that takes to complete a simulation run. 

Table 1 Observed and simulated outputs 

 Runtime (s)  Accepted Gap (s) K-S test (%) Wait Time (s) K-S test (%) 

Observed (Average) - 5.5 - 14.6 - 

SUMO Default 35 [7.1-7.8] 0 [54.6-62.9] 0 

SUMO Calibrated 30 [4.8-5.1] 0 [13.2-14.6] 3 

ANN-based Model 280 [5.3-5.6] 0 [13.9-14.9] 1 

 
It can be observed in Table 1 that the SUMO simulation with default parameters fails to replicate the actual 

conditions at the selected intersection, where the wait time is significantly higher than that of the observed one. The 
calibrated SUMO model yields far superior results as the wait time is nearly within the 95% confidence level, yet 
the accepted gap interval does not cover the average observed accepted gap value. The ANN-based model produces 
slightly better results than those of the calibrated SUMO model. Furthermore, the Kolmogorov–Smirnov (K-S) test 
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was conducted to compare the output distributions of accepted gap and wait time for simulated and observed 
models. The null hypothesis that two variables have similar distribution is rejected when the p-value is less than the 
significance level (1 percent). Despite that the gap acceptance distributions appear to be close, the K-S test failed for 
these variables because their p-value is less than 1 percent. 

Although the calibrated SUMO and ANN-based models produce similar results, it should be noted that the 
comparison is based on only the outputs extracted at the minor approach. During the simulation runs in SUMO 
calibrated model, it was observed that the vehicles on the major road frequently decelerated at the intersection, often 
coming to a full stop as the vehicles on the minor approach accepted unrealistically low gaps. This is due to the 
impatience parameter used by SUMO, where, as vehicles wait for more than a certain threshold, they start ignoring 
the priority rules. As a result, even though the calculated accepted gap within TraCI appears “reasonable”, the actual 
gap is not. The accepted gap calculation in TraCI is coded as distance over time, therefore it measures the estimated 
time the vehicle on the major road arrives at the intersection based on its instantaneous speed. However, as vehicles 
decelerate sharply before the intersection, the calculated accepted gap falls within the reasonable bounds, as shown 
in Table 1. 

In order to inspect this deceleration behavior, the speed and acceleration trajectories of vehicles on the major 
approach were generated for every three scenarios, as shown in Fig. 2 and Fig. 3, respectively. In these figures, the 
arithmetic average speed and acceleration are shown along with their upper and lower bounds. The position is the 
distance between point at the main road and end of the intersection in meters. 
 

 
Fig. 2 The acceleration trajectory of major vehicles (a) SUMO default, (b) SUMO calibrated and (c) ANN-based model 

 
Fig. 3 The speed trajectory of major vehicles (a) SUMO default, (b) SUMO calibrated and (c) ANN-based model 

The figures indicate that the default SUMO shows a consistent behavior regarding speed and acceleration, which 
means that the major vehicles do not change their deceleration or speed at the visibility distance and at the 
intersection. On the other hand, there is an inconsistency in the speed profile of higher priority vehicles in the 
calibrated SUMO model. In other words, most of the low priority vehicles are rushing through the intersection 
which causes the major vehicles to decelerate or slow down when approaching and passing the intersection (around 
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position 200 m), so that affects the overall performance of the traffic network in terms of travel time and safety. 
However, this inconsistency in ANN model is insignificant and most of the vehicles on major road continue their 
route without slowing down. In that respect, it can be argued that the proposed ANN-based model yields promising 
results as opposed to the SUMO model calibrated using default parameters. 

4. Conclusions 
In this paper, an ANN-based gap acceptance behavior model was proposed and implemented in the simulation 

model of a stop-controlled intersection in SUMO. Enhancements in computing power and the availability of 
simulation packages have oriented traffic engineers and practitioners to implement simulation-based approaches to 
predict the impact of operational and safety measures. There are numerous off-the-shelf simulation packages that 
enable users to simulate traffic facilities. However, an accurate calibration/validation is required to replicate the 
driver’s traffic behavior in the real-world condition. The underlying models in most of these simulation tools cannot 
and should not be directly used without a comprehensive calibration and validation process. Performing a thorough 
calibration and validation process depends on the capacity of the selected simulation tools’ ability of allowing users 
to implement their own traffic models. The simulation software used in this study is SUMO which is an open-source 
user-friendly microscopic simulation tool. TraCI, the application programming interface of SUMO, allows users to 
customize and implement their own algorithms.  

The gap acceptance decision of drivers was modelled by training an ANN model based on an extensive real-
world data, collected at a stop-controlled intersection in New Jersey. The ANN-based gap acceptance model was 
then implemented in SUMO using its API capability to reproduce driver’s behavior when crossing an intersection. 
The proposed model was compared with default SUMO and calibrated SUMO based on the wait time and accepted 
gaps of the vehicles at the minor approach. The results indicated that both ANN scenario and calibrated SUMO 
scenario produced nearly similar outputs regarding the accurate estimation of observed variables. However, 
unrealistic behavior of the vehicles on the major approach was detected based on the inspection of their speed and 
acceleration trajectories. To put it differently, higher priority vehicles had to decelerate or even stop as a result the 
lower priority vehicles at the stop sign accepting very small gaps due to impatience. This deviated from the observed 
behavior at the intersection. Therefore, any output measures that could be extracted from the simulation model, such 
as surrogate safety measures, would certainly be flawed. On the other hand, such unrealistic gap acceptance 
behavior was not observed in the ANN-based gap acceptance model. 

The future work will include the implementation of the ANN-based driving behavior models in more complex 
decision-making environments such as gap acceptance at yield-controlled intersections as studied in Bartin et al. 
[27] and lane changing manoeuvres as studied in Liu et al. [45]. 
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