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ABSTRACT Deep Reinforcement Learning (DRL) algorithms can scale to previously intractable problems.
The automation of profit generation in the stock market is possible using DRL, by combining the financial
assets price ‘‘prediction’’ step and the ‘‘allocation’’ step of the portfolio in one unified process to produce
fully autonomous systems capable of interacting with their environment to make optimal decisions through
trial and error. This work represents a DRLmodel to generate profitable trades in the stockmarket, effectively
overcoming the limitations of supervised learning approaches. We formulate the trading problem as a
Partially Observed Markov Decision Process (POMDP) model, considering the constraints imposed by the
stock market, such as liquidity and transaction costs. We then solve the formulated POMDP problem using
the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm reporting a 2.68 Sharpe Ratio on
unseen data set (test data). From the point of view of stock market forecasting and the intelligent decision-
making mechanism, this paper demonstrates the superiority of DRL in financial markets over other types of
machine learning and proves its credibility and advantages in strategic decision-making.
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INDEX TERMS Autonomous agent, deep reinforcement learning, MDP, sentiment analysis, stock market,
technical indicators, twin delayed deep deterministic policy gradient.

I. INTRODUCTION15

The prime objective of any investor when investing in any16

financial market is to minimize the risk involved in the trad-17

ing process and maximize the profits generated. Investors18

can meet this objective by successfully predicting the prices19

or trends of the market assets and optimally allocating the20

capital among the selected assets. This process is very chal-21

lenging for a human to consider all relevant factors in a22

complex and dynamic environment; therefore, the design of23

adaptive automated trading systems capable of meeting the24

investor’s objective and bringing more stagnant wealth into25

the global market has been an intensive research topic. Many26

efforts have been made to design such trading systems in27

the past decade. The majority of these efforts focused on28

using Supervised learning (SL) techniques [1], [2], [3], [4],29

[9], which in essence train a predictive model (e.g., Neural30

Network, RandomForest,. . . ) on historical data to forecast the31

trend direction of the market. Regardless of their popularity,32

The associate editor coordinating the review of this manuscript and

approving it for publication was Emre Koyuncu .

these techniques suffered from various limitations, leading 33

to sub-optimal results [5]. One primary limitation with SL 34

is that it only considers one aspect of the trading problem, the 35

prediction of the future price, and neglects the other important 36

aspect which is the control problem of optimally diversifying 37

the capital to be invested among the selected assets in the 38

portfolio, this is awell-known problem known as the Portfolio 39

Optimization Problem (POP) or Portfolio Selection Problem. 40

Another major drawback of the methods that rely on SL is 41

that they seek minimization of prediction error regardless of 42

the risk involved, also exogenous constraints by the market 43

environment (e.g., lack of liquidity, transaction cost) are not 44

being considered at all in most cases. 45

Reinforcement Learning (RL) offers to solve the draw- 46

backs of Supervised Learning approaches in trading financial 47

markets by combining the financial assets price ‘‘predic- 48

tion’’ step and the ‘‘allocation’’ step of the portfolio in one 49

unified process to optimize the objective of the investor, 50

where the trading agent (the algorithm) interacts with the 51

environment (the model) to take the optimal decision [6]. 52

In addition, financial data is highly time-dependent (function 53
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of time), making it a perfect fit for Markov Decision Pro-54

cesses (MDP) [7], which is the core process of solving RL55

problems. MDP captures the entire past data and defines the56

whole history of the problem in just the agent’s current state,57

and that’s highly crucial when it comes to modeling financial58

market data [8].59

Most works that studied the RL’s applications in financial60

markets and particularly in trading stocks, considered discrete61

action spaces [9], [10], [11], [12], i.e., buy, hold, and sell a62

fixed number of shares to trade a single asset. In this work,63

a continuous action space approach is adopted to give the64

trading agent the ability to gradually adjust the portfolio’s65

positions with each time step (dynamically re-allocate invest-66

ments), resulting in better agent-environment interaction and67

faster convergence of the learning process. In addition, the68

approach supports the managing of a portfolio with several69

assets instead of a single one. We first propose a novel formu-70

lation of the stock trading problem or what is referred to as the71

trading Environment as a Partially Observed Markov Deci-72

sion Process (POMDP) model considering the constraints73

imposed by the stock market, such as liquidity and transac-74

tion costs. More specifically, we design an environment that75

simulates the real-world trading process by augmenting the76

state (observation) representation with ten different technical77

indicators and sentiment analysis scores of news releases78

along with other state components. We then solve the formu-79

lated POMDP problem using the Twin Delayed Deep Deter-80

ministic Policy Gradient (TD3) algorithm, which can learn81

policies in high-dimensional and continuous action spaces82

like those typically found in the stock market environment.83

Finally, we evaluate our proposed approach by performing84

back-testing, which is the process used by traders and analysts85

to assert the viability of a trading strategy by testing it on86

historical data.87

The key contribution of this work is the solution it provides88

to combine prediction and decision-making processes to fully89

automate the trading procedure in the stock market by uti-90

lizing DRL, which is a particular advantage over supervised91

learning. Compared with other studies investigating the RL92

applications in financial markets, this paper has the advantage93

of using technical indicators and news sentiments in the94

state representation and the use of the Twin Delayed DDPG95

algorithm for the first time to solve the trading problemwhich96

is capable of handling continuous action space.97

II. BACKGROUND AND RELATED WORK98

A. MDP IN REINFORCEMENT LEARNING99

In essence, Markov Decision Processes [13] (MDP) is used100

to model stochastic processes containing random variables,101

transitioning from one state to another depending on certain102

assumptions and definite probabilistic rules. MDPs are a103

perfect mathematical framework to describe the reinforce-104

ment learning problem. In this framework, researchers call105

the learner or decision maker the agent and the surrounding106

which the agent interacts with (comprising everything outside107

the agent) the environment. The learning process ensues from108

the agent-environment interaction in MDP, at each time step 109

t ∈ {1, 2, 3, . . . ,T } the agent receives some representation 110

(information) of its current state from the environment st ∈ S, 111

and on that basis selects an action at ∈ A to perform. One step 112

later, due to its action, the agent finds itself in a new state, and 113

the environment returns a reward Rt+1 ∈ R to the agent as a 114

feedback of its action’s quality [14]. 115

B. THE OBJECTIVE OF REINFORCEMENT LEARNING 116

The objective of any RL problem is to maximize the cumu- 117

lative reward Gt it receives in the long run instead of the 118

immediate reward Rt 119

E[Gt ] = E[Rt+1 + Rt+2 + Rt+3 + · · · + RT ] (1) 120

In the above reward equation (Eq. 1), the term RT denotes 121

the reward received at the terminal state T. meaning that the 122

aforementioned equation is only valid when the problem at 123

hand is anEpisodic task, i.e., ends in a terminal state T. For the 124

Continuous tasks i.e., no terminal state, T = ∞, a discount 125

factor gamma is introduced to Eq. 1 (0 ≤ γ ≤ 1): 126

Gt = Rt+1 + γRt+2 + γ 2Rt+3 + · · · + γ k−1Rt+k + · · · 127

=

∞∑
0

γ kRt+k+1 (2) 128

C. BELLMAN EQUATIONS 129

Value functions are being used by almost all RL methods 130

to estimate how good (in terms of expected return) it is for 131

the agent to be in a given state or to perform an action in a 132

given state. This evaluation is being made based on the future 133

expected sum of rewards. Accordingly, value functions are 134

determined with respect to the future actions the agent will 135

take. We call a particular way of acting a Policy (π ) [14] 136

which is a function that maps from the environment’s states 137

to probabilities of selecting each possible action. 138

Bellman equations [15] are the fundamental property of 139

value functions used in dynamic programming as well as in 140

reinforcement learning to solve MDPs, and they are essen- 141

tial to understand how many RL algorithms work. Bellman 142

equation states that the value function of state s (Vπ (s)) can 143

be calculated by finding the sum over all possibilities of 144

expected returns, weighting each by its probability of occur- 145

ring following a policy π : 146

Vπ (s)
.
=

∑
a

π (a|s)
∑
s′

∑
r

P(s′, r|s, a)[r+γVπ (s′)], ∀s ∈ S 147

(3) 148

In a similar waywe define the action-value (qπ (s, a)) function 149

as: 150

qπ (s, a) =
∑
s′

∑
r

P(s′, r|s, a)[r + γ
∑
a′
π (a′|s′)qπ (s′, a′)] 151

(4) 152

From Bellman equations (Eq. 3 and Eq. 4) we can derive 153

what is called The Bellman Optimality Equations. Intuitively, 154
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FIGURE 1. Generalized policy iteration [14].

the Bellman optimality equation expresses the fact that the155

value of a state under an optimal policy (π∗) must equal the156

expected return for the best action from that state [14], and157

the optimal state-value function (V∗) equals to :158

V∗(s) = max
a

∑
s′

∑
r

P(s′, r|s, a)[r + γV∗(s′)] (5)159

Similarly, we define optimal action-value (q∗) function as:160

q∗(s, a) = max
π

qπ (s, a)161

=

∑
s′

∑
r

P(s′, r|s, a)[r + γ max
a′

q∗(s′, a′)]162

D. TAXONOMY OF RL ALGORITHMS163

RL algorithms are classified based on how to represent and164

train the agent into three main approaches:165

1) CRITIC-ONLY APPROACH166

This family of algorithms learns to estimate the value func-167

tion (State-value function or action-value function) by using168

what is called Generalized Policy Iteration (GPI). This con-169

cept refers to the interaction of two steps. The first step170

is the policy-evaluation. The main goal of this step is to171

collect information (value functions) under the given policy172

to determine how good it is. The second step is the policy-173

improvement. It is responsible of improving the policy by174

choosing greedy actions with respect to the value functions175

computed from the policy-evaluation step. The two steps176

alternate in a consecutivemanner until the value functions and177

policies stabilize, which means that the process has reached178

an optimal policy, as illustrated in Fig. 1.179

We distinguish between two different ways the agent learns180

the value function of the system. The first way is Tabular181

Solution Methodwhere the value functions are represented as182

arrays or tables and updated with more accurate values after183

each iteration as the agent collects more experience. This way184

of learning often finds exact solutions. However, it does not185

generalize well, and the state and action spaces must be small186

enough to be stored in tables.187

The second possible way in the critic-only approach is188

called Approximate Solution Method, which tends to general-189

ize better than the Tabular Method but has lower discrimina-190

tion, and it is capable of learning the value function of systems191

with enormous state and action spaces. Approximatemethods192

achieve this generalization by combining RL with supervised 193

learning algorithms. DeepReinforcement Learning is consid- 194

ered an approximate method that combines Neural Networks 195

with RL. Mnih et al. [16] is considered the father of DRL, 196

where he trained an agent of Deep Q-network (DQN) to play 197

Atari games, where pixels of the game screen were the input 198

data (state), and the directions of the joystick were actions. 199

He proved that DRL had outperformed all existing algorithms 200

in 2015 [17]. 201

2) ACTOR-ONLY APPROACH 202

All methods under the Critic-Only approach rely on the 203

GPI framework to learn approximate action values to infer a 204

good policy. Actor-Only methods (also called Policy Gradient 205

Methods) estimate the gradient of the objective, which is 206

maximizing rewards with respect to the policy parameters and 207

adjust the policy parameters θ based on the estimate (Eq. 6). 208

The parameterized policy function takes state and action as an 209

input and returns the probability of taking that action in that 210

state instead of taking the state only as an input and returning 211

the value function as Critic-Only methods do. Note that in the 212

below equation Gt represents the expected reward at time t. 213

θt+1 = θt + α∇ lnπ(at |st , θt )Gt (6) 214

3) ACTOR-CRITIC APPROACH 215

In the Actor-Critic approach, the actor’s job is to select 216

actions at each time step to form the policy, whereas the 217

critic’s role is to evaluate these actions taken by the actor. 218

So the approach is gradually adjusting the policy parameters 219

θ of the actor to take actions that maximize the total reward 220

predicted by the critic. The TD error (δ) calculated by the 221

critic to evaluate the action is as follows: 222

δ = Rt+1 + γ V̂ (st+1,w)− V̂ (st ,w) (7) 223

The value function estimation of the current state V̂ (st ,w) is 224

added as a baseline to make the learning faster. The parameter 225

θ of the actor is being adjusted in the way of maximizing 226

the total future reward from Eq. 6 and Eq. 7 we conclude the 227

equation used by the Actor-Critic to update the gradient at 228

each time step t as the following: 229

θt+1 = θt + α∇ lnπ (at |st , θt )(Rt+1 230

+ γ V̂ (st+1,w)− V̂ (st ,w)) 231

Many researchers worked on improving the DQN algo- 232

rithm. Van Hasselt et al. [18] proposed to use two networks 233

instead of one Q-network to choose the action and the other 234

to evaluate the action taken to solve the deviation problem 235

in DQN. They called it Double-DQN. Lillicrap et al. [19] 236

built on the top of Double-DQN, an algorithm based on the 237

deterministic policy gradient (DDPG) that can operate over 238

continuous action spaces. The Twin Delayed Deep Deter- 239

ministic Policy Gradient (TD3) algorithm which will be dis- 240

cussed in section IV-A, was proposed by Fujimoto et al. [20] 241

to tackle the problem of the approximation error in DDPG. 242
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E. RL IN FINANCE243

Bertoluzzo and Corazza [21] investigated the performance244

of different RL algorithms in day-trading for one selected245

Italian stock. Specifically, they compared the performance of246

Q-learning, and Kernal-based reinforcement learning, con-247

cluding that Q-learning performance outperformed Kernal-248

based RL. In a subsequent study (2014) [10], they explored249

the effect of different reward functions such as Sharpe250

ratio, average log return, and OVER ratio on the perfor-251

mance of Q-learning. By trading six selected Italian stocks,252

they reported that lagged return reward function has the253

best performance. Instead of approximating a value function254

(critic-only), Deng et al. [12] made one of the first attempts255

at combining Deep Learning with Recurrent Reinforcement256

Learning to directly approximate a policy function. This257

approach is called ‘‘deep recurrent reinforcement learning’’258

(DRRL). In their proposed method, first, the DL part extracts259

45 useful features from the market to be used as state repre-260

sentatives in the environment. Secondly, they use a Recurrent261

Neural Network (RNN) as a trading agent to interact with the262

deep-generated state features and make decisions. To investi-263

gate the potential advantage of Actor-Critic methods in solv-264

ing the day trading problem, Conegundes and Pereira [22]265

used Deep Deterministic Policy Gradient (DDPG) algorithm266

to solve the asset allocation problem. Considering different267

constraints such as liquidity, latency, slippage, and transac-268

tion costs, they back-tested their approach on the Brazilian269

Stock Exchange datasets. They showed that their approach270

successfully obtained 311% cumulative return in three years271

with an annual average maximum drawdown around 19%.272

III. PROBLEM DESCRIPTION273

The stock trading problem is being modeled as Partially274

Observed Markov Decision Process (POMDP), which can275

be formulated by describing its State Space, Action Space,276

and Reward Function. The POMDP model of the problem277

is called the trading environment, and it’s built to carefully278

mimic the real-world trading process.279

A. STATE SPACE280

The state-space in the proposed environment is designed to281

support multiple and single stock trading by representing the282

state as (1 + 13 × N )-dimensional vector where N is the283

number of assets we consider to trade in the market. Hence284

the state space increases linearly with the number of assets285

available to be traded.286

There are two main parts of the state presentation. The first287

part is the Position State ∈ R1+N
+ which holds the current288

cash balance and shares owned by each asset in the portfolio,289

and the second part of the state is the Market Signals ∈290

R12×N , which holds the necessary market features for each291

asset as a tuple, these features are the required information292

provided to the agent to make predictions of the market293

movement. The first type of information is based on the294

hypothesis of technical analysis [23], which states that the295

future behavior of financial markets is conditioned on its past; 296

hence technical indicators are being used in the state space to 297

help the agent interpret the market behavior. The second type 298

of information is based on fundamental analysis [24], which 299

studies everything from the overall economy and industry 300

conditions to news releases. Therefore a Natural Language 301

Processing (NLP) approach is used to measure the general 302

sentiment from the news releases and integrate it with the 303

state representation. The state (observation) vector at each 304

time step is provided to the agent as follows: 305

St = [[bt,ht], [{(Ci
t,SS

i
t,T

i
t)|i ∈ N }]] 306

Each component of the state space is defined as follows: 307

• N ∈ ZN
+ : Number of assets in the portfolio. 308

• bt ∈ R+: The available cash balance in the portfolio at 309

time step t. 310

• ht = {hit |i ∈ N } = {h0t , h1t , . . . , hNt } ∈ ZN
+ : The 311

number of shares owned for each asset i in N at time 312

step t. 313

• Ci
t ∈ RN

+ : The close price of asset i in N at time step t. 314

• SSit ∈ (−1, 0, 1): An integer 1, 0 or -1 to indicate the 315

sentiment of the news related to stock i at time step t. 316

• Ti
t: The 10 different Technical Indicators vector for asset 317

i in the portfolio at time step t using the past prices of the 318

asset in a specified look-back window (most common 319

window is 14 or 9). 320

To demonstrate the state space, let’s assume that we have 321

three different assets (N = 3) in the trading environment 322

and an initial capital of 1000$ to be invested, the state vector 323

would be a 40-dimensional vector and the initial state(s0) 324

given by the environment would be: 325

s0 = [[1000, 0, 0, 0][(p10, SS
1
0 ,T

1
0 ), (p

2
0, SS

2
0 ,T

2
0 ), 326

(p30, SS
3
0 ,T

3
0 )]] 327

B. ACTION SPACE 328

The designed agent in this study receives the state st at 329

each time step t as input and sends back action in the range 330

between 1 and -1 inclusive, at ∈ [−1, 1], the action then 331

is re-scaled using a constrain Kmax , which represents the 332

maximum allocation (buy/sell shares), transforming at to 333

an integer K ∈ [−Kmax , . . . ,−1, 0, 1, . . . ,Kmax], which 334

stands for the number of shares to be executed, resulting in 335

decreasing, increasing or holding of the current position of the 336

corresponding asset [25]. There are two important conditions 337

regarding the action execution in our approach: 338

• If the current capital (cash) in the portfolio is insufficient 339

to execute the buy action, the action will be partially 340

executed with what the current capital can buy of the 341

requested stock. 342

• If the number of shares for a specific asset (hit ) in the 343

portfolio is less than the number of shares to be sold 344

(ait ∈ Z−), the agent will sell all the remaining shares 345

of this asset in the portfolio. 346
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We can mathematically express the action space as the347

following:348

At = {ait |i ∈ N } = {a0t , a1t , . . . , aNt }349

S.t. ait ∈ ZN
350

− Kmax ≤ ait ≤ Kmax , ∀i ∈ N351

ait = hit if |a
i
t | > hit , ∀at ∈ Z− (8)352

where:353

* N : assets in the portfolio.354

* At : the action vector sent by the agent to the355

environment.356

* ait : the action (number of shares) to buy/sell for asset i at357

time step t.358

* Kmax : the maximum number of shares the agent can359

re-allocate of an individual asset at each time step t.360

* hit : the portfolio position (number of shares) of asset i at361

time step t.362

The action space depends on the number of assets available363

in the portfolio N and it’s given as (2× Kmax + 1)N ; hence364

the action space increases exponentially by increasing N .365

C. REWARD FUNCTION366

The difference between the portfolio value Vt at the end of367

period t and the value at the end of previous period t − 1 rep-368

resents the immediate reward r(s, a, s′) received by the agent369

after each action, and we denote the final investment return370

at a target time Tf as G.371

r(s, a, s′) = Vt − Vt−1 (9)372

where the portfolio value V at each time step is calculated as:373

Vt = bt + ht .Ct (10)374

where:375

* bt : the available cash balance in the portfolio at time376

step t.377

* ht = {hit |i ∈ N }: the position vector (number of shares378

of each asset) at time step step t.379

* Ct = {C i
t |i ∈ N }: the closing price of each asset in the380

portfolio at time step t.381

The transition cost can be represented in many different382

ways in real life, and it varies from one broker to another.383

To better simulate the real-world trading process in the stock384

market, transaction costs (i.e., commission fees) are incor-385

porated into the immediate reward (r(s, a, s′)) calculation.386

In this study, we set the commission as a fixed percentage387

of the total closed deal cash amount, where dbuy represents388

the commission percentage when buying is performed, and389

dsell is the commission percentage for selling:390

dt = {d it |i ∈ N } = [d0t , d
1
t , . . . , d

N
t ]391

where : d it =


dbuy, if ait > 0
0, if ait = 0
dsell, if ait < 0

392

The commission vector dt is incorporated into the immediate 393

reward function by excluding the commission amount paid 394

from the portfolio value calculated in Eq. 10, so the agent 395

would avoid excessive trading that results in a high commis- 396

sion rate and therefore avoids a negative reward: 397

Vt = bt + ht .Ct − ht .(Ct−1 ◦ dt ) (11) 398

In the above equation, the amount paid for the commission 399

is calculated by taking the Hadamard product of the commis- 400

sion vector dt and the closing price of the previous period 401

Ct−1. That’s because the action of buying/selling occurred 402

in the previous state and therefore commission should be 403

calculated using the closing prices on that state. 404

D. ENVIRONMENT CONSTRAINTS AND ASSUMPTIONS 405

We impose the following constraints and assumptions on the 406

MDP environment for two main reasons. First, to idealize 407

and simplify the complex financial market systems (e.g., 408

via liquidity assumption) without losing the nature of the 409

problem, and the second reason is to make the model closer 410

to a real-world situation. 411

1) NON-NEGATIVE BALANCE CONSTRAINT 412

The cash balance in any state is not allowed to be negative, 413

bt > 0. Therefore, the actions should not result in a negative 414

cash balance. To achieve that, the environment prioritizes the 415

execution of sell actions (at < 0) in the action vector At 416

(Eq. 8) to guarantee cash liquidity in the portfolio, so buy 417

actions (at > 0) would be fulfilled afterward. If the buy 418

action still results in a negative balance (i.e., not enough cash 419

to fulfill the action), it is fulfilled partially with what remains 420

in the portfolio’s cash balance. 421

2) SHORT-SELLING CONSTRAINT 422

Short selling is prohibited in the designed environment, all 423

portfolio’s positions must be strictly non-negative: 424

ht = {hit |i ∈ N } = {h0t , h1t , . . . , hNt } ∈ ZN
+ 425

3) ZERO SLIPPAGE ASSUMPTION 426

When the market volatility is high, slippage occurs between 427

the price at which the trade was ordered and the price at 428

which it’s completed [26]. In this study, themarket liquidity is 429

assumed to be high enough tomeet the transaction at the same 430

price when it was ordered [27]. This assumption is mostly 431

valid in a real-world trading environment when trading in big 432

stock markets. 433

4) ZERO MARKET IMPACT 434

In financial markets, a market participant impacts the market 435

when it buys or sells an asset which causes the price change. 436

The impact provoked by the agent in this study is assumed 437

to have no effect on the market when it performs its actions. 438

This assumption is mostly true even in real-life trading when 439

the market volume is big enough to make the individual 440

investment is insignificant [27]. 441
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IV. DETAILS OF IMPLEMENTATION442

A. THE TRADING AGENT443

Actor-Critic-based algorithms successfully solved the con-444

tinuous action space by utilizing function approximation445

and policy gradient methods. One of the most famous446

actor-critic, off-policy algorithms is the Deep Deterministic447

Policy Gradient algorithm (DDPG) [28]. Still, despite the448

excellent performance DDPG achieved in continuous con-449

trol problems, it has a significant drawback similar to many450

RL algorithms, which is the overestimation of action values451

(maxa Q(st+1, at+1)) as a result of function approximation452

error. This overestimation bias is unavoidable in RL as we453

use estimates instead of ground truth in the learning pro-454

cess. In this study, as our problem has a continuous space455

of actions, we use Twin Delayed Deep Deterministic Policy456

Gradient (TD3) [20] algorithm, which is a direct successor457

of DDPG but with improvements to tackle the overestima-458

tion problem. TD3 can reduce the overestimation bias, thus459

reducing the accumulation of errors in the learning process460

by introducing three main components to DDPG:461

1) Clipped Double Critic Networks: The first compo-462

nent added is a novel clipped variant of Double463

Q-learning [18] to replace the single critic. Using two464

different and separate critic networks to make an inde-465

pendent estimate of the value function can be used to466

make unbiased estimates of the actions selected using467

the opposite value estimate. TD3 uses a clipped double468

Q-learning instead of the traditional one used in Double469

Q-learning where it takes the smallest value of the470

two critic networks estimates, that is, if we use the471

traditional Double Q-learning in actor-critic methods,472

the policy and target networks are updated so slowly473

that they make similar estimates and offered slight474

improvement.475

2) Delayed Updates: The second component is added to476

solve the residual error accumulation formed due to477

the learning process without a fixed target (estimates478

instead). In Critic-Actor methods, this accumulation of479

errors is amplified due to the interaction between the480

policy (actor) and value (critic) networks, where the481

policy gradient is maximized over the value estimate.482

Delaying the policy network update, i.e., updating it483

less frequently than the value network, allows the value484

network to stabilize before it can be used to update485

the policy gradient. This results in a lower variance of486

estimates and, therefore, better policy.487

3) Target Policy Smoothing Regularization: The final488

component is applying a regularization strategy to the489

target policy by adding a small random noise and aver-490

aging over mini-batches. This is important to reduce491

the variance of the target values when updating the492

critic, which causes by overfitting spikes in the value493

estimate.494

The agent in this paper performs daily trading operations495

and to aid the agent in understanding its environment (the496

Algorithm: Twin Delayed Deep Deterministic Policy
Gradient (TD3) [20]

1. Initialization
Critic networks Q(s, a|w1), Q(s, a|w2) and actor π (s|θ ),
randomly, with weightsW1,W2 and θ .
Target networks Q′1, Q

′

2 and π
′ with weights

W ′1←− W1,W ′2←− W2, θ
′
←− θ

Replay buffer D
2. foreach t=1 to T do

Initialize a random process N for action exploration
Select action with exploration noise
a ∼ π (s|θ )+ ε, ε ∼ N (0, σ )
Observe reward r and next state s′

Store transition tuple (s, a, r, s′) in D
Sample mini-batch of N transitions (s, a, r, s′) from
D
ã← π (s′|θ )+ ε, ε ∼ clip(N (0, σ̃ ),−c, c)
y← r + γ mini=1,2Q(s′, ã|wi)
Update critics
Wi← argminWi N

−1 ∑
(y− QWi (s, a))

2

if t mode d then
Update θ by the deterministic policy gradient:
∇θJ (θ ) = N−1

∑
∇aQW1 (s, a)|a=πθ (s)∇θπθ (s)

Update target networks:
W ′i ← τWi + (1− τ )W ′i
θ ′← τθ + (1− τ )θ ′

stock market), we augmented the state representation of ten 497

different technical indicators and news sentiment scores. 498

B. TECHNICAL INDICATOR 499

We used the ten most famous indicators used by technical 500

traders when trading in the stock market [23], we describe 501

them briefly as follows: 502

1) Relative Strength Index (RSI) ∈ RN
+ : A momentum 503

indicator to measure the magnitude of recent price 504

changes and identify overbought or oversold conditions 505

in the stock price. 506

2) Simple Moving Average (SMA) ∈ RN
+ : An important 507

indicator to identify current price trends and the poten- 508

tial for a change in an established trend. 509

3) Exponential Moving Average (EMA) ∈ RN
+ : Like 510

SMA, EMA is a technical indicator used to spot cur- 511

rent trends over time. However, EMA is considered an 512

improved version of SMA by giving more weight to the 513

recent prices considering old price history less relevant; 514

therefore it responds more quickly to price changes 515

than SMA. 516

4) Stochastic Oscillator (%K) ∈ RN
+ : It’s a momentum 517

indicator comparing the closing price of the stock to a 518

range of its prices in a look-back window periodW . 519

5) Moving Average Convergence/Divergence (MACD) 520

∈ RN : Is one of the most used momentum indicators to 521
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identify the relationship between two moving averages522

of the stock price and it helps the agent to understand523

whether the bullish or bearish movement in the price is524

strengthening or weakening [29].525

6) Accumulation/Distribution Oscillator (A/D) ∈ RN :526

A volume-based cumulative momentum indicator that527

helps the agent to assess whether the stock is being528

accumulated (bought) or distributed (sold) by measur-529

ing the divergences between the volume flow and the530

stock price.531

7) On-Balance Volume Indicator (OBV) ∈ RN :532

Another volume-based momentum indicator that uses533

volume flow to predict the changes in stock price [30]:534

8) Price Rate Of Change (ROC) ∈ RN : A momentum-535

based indicator that measures the speed of stock price536

changes over the look-back windowW .537

9) William’s%R∈ RN
+ : Known also asWilliams Percent538

Range, is a momentum indicator used to spot entry539

and exit points in the market by comparing the closing540

price of the stock to the high-low range of prices in the541

look-back window (W).542

10) Disparity Index ∈ RN
+ : Its value is a percentage that543

indicates the relative position of the current closing544

price of the stock to a selected moving average. In this545

study, the selected moving average is the EMA of the546

look-back window (W).547

C. SENTIMENT SCORES548

The supply and demand fluctuations in the stock market are549

highly sensitive to the moment’s news due to the impact of550

mass media on the investor’s behavior. Hence many traders551

and investors consider the news reports in their stock-picking552

strategy. In our proposed approach, we believe that incor-553

porating the general news sentence toward the asset being554

considered in the observation (state) definition will help the555

agent learn a better trading strategy. In Ding et al. [31] study,556

they showed that news headlines are more useful in fore-557

casting than using the entire news article content. Therefore,558

we only consider news headlines as our input to calculate559

the sentiment score. We describe the process of calculating560

a sentiment score for each asset in the portfolio at time step t561

(day) as the following:562

• We use a rule-based matching approach to search for563

the asset name, stock symbol, or other keywords in the564

headline news (ex. Microsoft or MSFT, tech,..) released565

on day t.566

• Then we use a fine-tuned BERT model called567

FinBERT [32] to calculate the sentiment probability568

(Positive, Negative, or Neutral) of each news headline.569

FinBERT model is a pre-trained NLP model to analyze570

sentiments specifically for financial text.571

• Finally, we take the average of the asset’s news senti-572

ment probabilities for each day and assign 1 if the pos-573

itive probability is higher than the negative probability574

and -1 otherwise.We ignore the neutral probability as we575

believe that if an asset has been mentioned on the news,576

it will impact the asset price (positively or negatively). 577

If the asset has no news on a given day, we assign 0 to 578

the sentiment score. 579

V. EXPERIMENTS AND RESULTS 580

We evaluate our proposed approach by performing two dif- 581

ferent back-testing, which is the process used by traders and 582

analysts to assess the viability of a trading strategy by testing 583

it on historical data. 584

We perform two different back-testing experiments. The 585

purpose of the first experiment (Section. V-B) is to validate 586

the superiority of the continuous action space to solve the 587

trading problem by comparing the results of the same experi- 588

ments reported by Kaur [39]. In their paper, a discrete action 589

space is adapted to solve the problem, where the agent can 590

choose to buy, sell or hold action (i.e., discrete action space) 591

of a fixed number of shares on each time step for a portfolio 592

of two assets, namely; Qualcomm (QCOM) and Microsoft 593

(MSFT).We back-test our approach on the same 5-years daily 594

historical stock data (between 2011-2016) used in their study 595

with the same amount of initial capital ($10,000). 596

The second experiment (Section. V-C) is conducted to 597

validate the robustness of our model on a large space of 598

actions and states by considering 10 different assets in the 599

portfolio. In addition, considering that the first experiment 600

was on training data set only, we evaluated the performance 601

on an unseen market data (test data set) to check the agent’s 602

ability of generalization. 603

We use two metrics to evaluate our results: the first metric 604

is the cumulative sum of rewards, i.e., the total profits at 605

the end of the trading episode. The second metric is the 606

annualized Sharpe ratio [38] which combines the return and 607

the risk to give the average of the risk-free return by the 608

portfolio’s deviation. In general, a Sharpe ratio above 1.0 is 609

considered to be ‘‘good’’ by investors because this suggests 610

that the portfolio is offering excess returns relative to its 611

volatility. A Sharpe ratio higher than 2.0 is rated as ‘‘very 612

good’’ whereas a ratio above 3.0 is considered ‘‘excellent’’. 613

A. DATA DESCRIPTION AND PREPROCESSING 614

In this work, We use Yahoo Finance [33] to retrieve historical 615

market daily prices. The retrieved historical data consists of 616

7 columns;Date, Volume, Open, Close, Adjusted Close, High 617

and Low prices. To prepare each dataset to be used by the 618

model, we first perform timestamps processing by using the 619

trading calendar (exchange-calendars package [34]) to check 620

if the market was open on the given dates to the agent and 621

exclude weekends and holidays from the dataset so the agent 622

will not face gaps in the trading process. Further dataset pro- 623

cessing is required to ensure that all financial assets (stocks) 624

considered in the portfolio have an equal length of historical 625

data points. Some stocks have been recorded for decades, 626

while other newly listed stocks are only a few months. This 627

time-dimension alignment of stocks’ historical data will pre- 628

vent the biased action of the agent toward the stock with more 629

data. Once we have the timestamps, processed we use Close, 630
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High, Low prices and Volume at each timestamp to calcu-631

late the technical indicators of each asset with a look-back632

window (W).633

To obtain comprehensive and accurate financial news,634

we combined headline news from Benzinga, Seeking Alpha,635

Zacks and other financial news websites [35], and crawled636

historical news headlines from Reddit worldNews Channel637

[36]. The final dataset consists of 3,288,724 news headlines638

ranging from 2009 to 2021, which we utilized to calculate the639

sentiment score.640

B. FIRST EXPERIMENT641

In the first experiment, we conduct three evaluations similar642

to the benchmark paper [39]. All three evaluations share the643

same configurations like the number of assets in the portfolio,644

initial capital, commission rates, etc. but with different com-645

ponents of the environment’s state representation. We start646

with a baseline that only contains the close price as a market647

signal feature, we then add technical indicators in the second648

evaluation, and finally, we evaluate by adding sentiment anal-649

ysis scores. In Table. 1, we summarize the three evaluation650

results of the experiment.651

Due to the stochasticity in the learning process, the exper-652

iment results may change at each run depending on different653

factors such as the actions the agent randomly starts with and654

uses to explore or the random weight initialization. As sug-655

gested in [37], to ensure fairness and reliability of our results,656

we average multiple runs over different random seeds to657

have an insight into the population distribution of the algo-658

rithm performance in an environment. In this experiment’s659

evaluations, we report and highlight results across several660

independent runs.While the recommended number of trials to661

evaluate an RL algorithm is still an open question in the field,662

we reported the mean and standard error across five trials663

(runs), which is the suggested number in many studies [37].664

1) EVALUATION ON BASELINE ENVIRONMENT665

To evaluate the continuous action approach in our model,666

we test it by solving the problem with only the close price of667

the assets as a market signal; hence the state representation668

in this baseline environment consists of only the position669

state and the close price of the asset at t (Ct ) as a market670

signal, i.e., the agent will solely make its trading decisions671

based on merely the closing price of the stock as a market672

feature.We perform 5 experiment trials, eachwith 200 epochs673

(episodes) for the same hyperparameter configuration, only674

varying the random seed across trials.675

Fig. 2 shows the average return (sum of rewards) at each676

trading episode and the standard error across the 5 runs.677

As can be observed, the agent’s performance increases with678

more experience it gains with the number of epochs to suc-679

cessfully achieve 33960$ average return (profits) with a stan-680

dard error equals to ±4473$. From the commission spent by681

the agent, we can conclude that the agent was successfully682

able to find a balanced trading strategy by balancing between683

trading and holding positions. Finally, the average annual684

Sharpe ratio of our approach on the baseline environment 685

was 1.43 with a standard error of±0.13. This is significantly 686

higher than the reported Sharpe ratio 0.85 in [39] benchmark. 687

2) EVALUATION ON WithTechIndicators ENVIRONMENT 688

Using the same configurations used in baseline environment 689

evaluation, we augment the state with technical indicators and 690

run 5 independent experiments to report the average return, 691

Sharpe ratio, and commission. We refer to this environment 692

with technical indicators and close price in the state represen- 693

tation asWithTechIndicators environment. 694

The results in Fig. 3 demonstrate that augmenting the 695

environment with technical indicators has brought more help- 696

ful information to the agent to make better decisions. The 697

agent successfully achieved 89782$ average return (profits) 698

with ±18980$ standard error, and an average Sharpe ratio 699

equals 2.75 with a standard error ±0.43. We can also notice 700

that the average amount of commission is almost two times 701

the amount spent in the baseline environment, which means 702

that the agent was significantly more active in buying/selling 703

stocks and closed more successful deals. In addition, our 704

approach outperformed the benchmark reported Sharpe ratio 705

of 1.4. 706

3) EVALUATION ON WithSentiments ENVIRONMENT 707

We refer to this environment with sentiment analysis scores, 708

technical indicators, and close price in the state representation 709

as WithSentiments environment. We include the sentiment 710

scores of news headlines for each asset in the state representa- 711

tion and repeat the experiment with the same configurations. 712

The total average return profits increased to 115591$ with a 713

standard error equals to ±17721 across the five runs. Sharpe 714

ratio increased to 3.14 and±0.40 standard error. The average 715

amount of commission equals the amount spent in the envi- 716

ronment with only technical indicators (WithTechIndicators 717

environment), which means that the agent performed almost 718

the same number of trades but with a better decision (policy). 719

In the benchmark [39] study, they also reported an increase 720

in the agent performance when adding sentiment scores to 721

the state with a Sharpe ratio equal to 2.4. The plot showing 722

the results in Fig. 4 demonstrates that augmenting the state 723

with sentiment analysis along with technical indicators has 724

improved the agent performance. 725

Experiment’s Summary 726

We notice in all plots of the three evaluations that the policy 727

improves over time, as the agent accumulates more reward, 728

and thus the Sharp ratio increases. Towards the end, the slope 729

is almost flat indicating that the policy has stabilized to the 730

local optimum. As the stock trading problem has never been 731

solved, we do not have a specified reward or Sharpe ratio 732

threshold at which it’s considered solved. 733

C. SECOND EXPERIMENT 734

In the second experiment, we evaluate our approach on a 735

wider action and state spaces by considering ten assets to 736
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FIGURE 2. TD3 agent performance metrics on Baseline environment using the same hyperparameter configurations averaged over 5 different random
seeds. a) Average return (Profits in dollars) at the end of each episode. b) The average annual Sharpe ratio at the end of each episode. c) The average
amount of commission spent at the end of each episode.

FIGURE 3. TD3 agent performance metrics on WithTechIndicators
Environment using the same hyperparameter configurations averaged
over 5 different random seeds. a) Average return (Profits in dollars) at the
end of each episode. b) The average annual Sharpe ratio at the end of
each episode. c) The average amount of commission spent at the end of
each episode.

FIGURE 4. TD3 agent performance metrics on WithSentiments
Environment using the same hyperparameter configurations averaged
over 5 different random seeds. a) Average return (Profits in dollars) at the
end of each episode. b) The average annual Sharpe ratio at the end of
each episode. c) The average amount of commission spent at the end of
each episode.

trade, AAPL,MSFT, QCOM, IBM, RTX, PG, GS, NKE, DIS737

and AXP.738

TABLE 1. The performance evaluation comparison between three
different evaluations and benchmark.

FIGURE 5. Train, and test data splits.

Our back-testing uses historical daily data from 01/01/2010 739

to 01/01/2018 with an initial capital of 100000$ for perfor- 740

mance evaluation. We split the data set into two periods, the 741

first period is to train the agent, the second is used to test the 742

performance of the agent on unseen data (Fig. 5). 743

We notice that for our model to generalize better, we had to 744

impose regularization by normalizing the observation space 745

using Batch Normalization. This technique uses mini-batches 746

from samples to have unit mean and variance. It maintains 747

a running moving average of the mean and variance to 748

normalize the observation vector during testing. We further 749

normalized the rewards received by the agent as it makes the 750

gradient steeper for better rewards. We also set the look-back 751

window to 20 (W = 20). We added action noise to encourage 752

exploration during training to force the agent to try different 753

actions and explore its environment more effectively, leading 754

to higher rewards and more elegant behaviors. 755

Our approach successfully archived a 2.68 Sharpe ratio 756

which is considered ‘‘very good’’ and 110308$ as total profits 757
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(Rewards) on the test data. We let the agent keep learning on758

the testing set since this will help the agent better adapt to the759

market dynamics.760

Disabling Sell Action: To investigate whether profits761

made on the test data (between 2016 and 2018) are a mat-762

ter of the standard increase in the stocks and the market763

growth in general (primarily that tech stocks are known for764

their excellent performance in the past years) or are made765

due to the decision made by the agent, we disable the sell766

action and only let the agent buy and hold during the trad-767

ing episode. As a result, the agent allocated the capital as768

follows:769

and hold on to this position until the end of the episode. The770

Sharpe ratio has decreased to 2.00 with 66949$ as total profits771

(Rewards), which indicates that the decision made by the772

agent had a positive effect on the return and it was not merely773

due to the natural growth of the market.774

VI. CONCLUSION AND FUTURE WORKS775

This work presented a Deep Reinforcement Learning776

approach that combines technical indicators with sentiment777

analysis to find an optimal trading policy for assets in the778

stock market. Results show that the addition of technical779

indicators and sentiment scores of the news headlines to the780

state representation has significantly improved the agent’s781

performance and the superiority of using a continuous action782

space over a discrete one to solve the trading problem.783

We also explored the potential of using an Actor-Critic algo-784

rithm (TD3) to solve the portfolio allocation problem. Our785

approach achieved an annual Sharpe ratio of 2.68 on test786

data, which is considered ‘‘Good’’ by investors. The approach787

can be improved in future work by having more compu-788

tational power to run more experiences and better evaluate789

the approach. Our environment, agent, and learning process790

possess many hyperparameters that must be tuned. It will be791

interesting to see the model’s performance with better-tuned792

parameters, which requires high computation power. In addi-793

tion, we believe that training an NLP algorithm to process794

the financial news content instead of only the headline may795

positively affect the agent performance.796
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