
IEEE TRANSACTIONS ON MULTIMEDIA 1

BoB: Bandwidth Prediction for Real-Time
Communications Using Heuristic and

Reinforcement Learning
Abdelhak Bentaleb, Member, IEEE, Mehmet N. Akcay, May Lim, Ali C. Begen, Senior Member, IEEE,

and Roger Zimmermann, Senior Member, IEEE

Abstract—Bandwidth prediction is critical in any Real-time
Communication (RTC) service or application. This component
decides how much media data can be sent in real time.
Subsequently, the video and audio encoder dynamically adapts
the bitrate to achieve the best quality without congesting the
network and causing packets to be lost or delayed. To date,
several RTC services have deployed the heuristic-based Google
Congestion Control (GCC), which performs well under certain
circumstances and falls short in some others. In this paper, we
leverage the advancements in reinforcement learning and propose
BoB (Bang-on-Bandwidth) — a hybrid bandwidth predictor
for RTC. At the beginning of the RTC session, BoB uses a
heuristic-based approach. It then switches to a learning-based
approach. BoB predicts the available bandwidth accurately and
improves bandwidth utilization under diverse network conditions
compared to the two winning solutions of the ACM MMSys’21
grand challenge on bandwidth estimation in RTC. An open-
source implementation of BoB is publicly available for further
testing and research.

Index Terms—Bandwidth prediction; real-time communica-
tions; reinforcement learning; RTC; WebRTC; AlphaRTC.

I. INTRODUCTION

Real-time Communication (RTC) services account for a
sizeable fraction of today’s Internet traffic [23]. For example,
there were 300 million daily meeting participants on the Zoom
platform alone in 2020, a 50% increase from 2019 [65], and on
the Facebook Messenger application, there were 150 million
daily video calls in 2021 [49]. With ubiquitous connectivity
and more efficient video and audio codecs, RTC services
continue to grow and evolve.

Today, RTC is used in a range of applications such as
video gaming [53], [43], [26], videoconferencing [38], [34], e-
learning [9] and real-time immersive experience sharing [59].
Needless to say, RTC is an integral part of our lives as it
enables us to stay connected with the rest of the world while
working remotely, which has become the new normal due to
the COVID-19 pandemic. However, this does not mean users’
quality of experience (QoE) for RTC services is always great.
Occasionally and sometimes more than occasionally, users still

A. Bentaleb is with Gina Cody School of Engineering
and Computer Science, Concordia University, Canada (e-mail:
abdelhak.bentaleb@concordia.ca)

M. Lim and R. Zimmermann are with the School of
Computing, National University of Singapore, Singapore (e-mail:
{maylim,rogerz}@comp.nus.edu.sg).

Mehmet N. Akcay and Ali C. Begen are with Ozyegin University, Istanbul,
Turkey (e-mail: necmettin.akcay@ozu.edu.tr; ali.begen@ozyegin.edu.tr).

suffer from blurry, low-quality or distorted video, high latency
or video freezes and audio drops.

To date, there has been significant research to improve QoE
in RTC services. These efforts offered several solutions that
can be divided into three broad categories: (i) congestion
control optimization at the transport layer [22], [24], [60],
[64] that primarily aims to provide an accurate bandwidth
estimation, (ii) bitrate selection optimization for video
codecs [68] (e.g., H.26x, VPx and AV1) that strives to adapt
the bitrate (through the rate control at the application layer) for
each frame to suit the instantaneous network capacity changes,
and (iii) mixed techniques that combine congestion control
and bitrate selection optimizations. Despite the advances in
codec rate control, accurate bandwidth estimation is still an
open problem. It plays a critical role in maintaining a good
QoE as the codec allocates more or fewer bits based on
this estimation. In other words, if the actual bandwidth is
overestimated or underestimated, this can be detrimental to
the QoE. Existing heuristics (e.g., [22], [21]) may work well
in some network environments but not so well in others [27]
due to dynamic, complex and diverse bandwidth fluctuations.
These heuristics mainly follow the Google Congestion Control
(GCC) algorithm [1] that implements two rules that consider
the aggregated Real-time Transport Protocol (RTP, RFC 3550)
feedback information to estimate the bandwidth. The first rule
is a loss-based rate controller implemented at the sender, while
the second is a delay-based one implemented at the receiver.

Deep reinforcement learning (DRL) has recently emerged
as a key solution for many networking problems such as
bitrate adaptation [45], congestion control in TCP [7], [42]
and RTC [27], scheduling [44] and bandwidth prediction [13].
Leveraging the power of a learning-based approach that
masters and adapts dynamically to various environments, we
design BoB (Bang-on-Bandwidth) — a bandwidth predictor
for RTC. BoB is located at the receiver and operates
fully automatically by learning from experience and reacting
quickly to changes in network conditions while considering
video quality and packet delay/loss. It uses actor-critic
networks for model training and Proximal Policy Optimization
(PPO) [52] with clip and Adam optimizers for policy updates
at each time interval. Using DRL directly in the context
of bandwidth prediction requires a certain level of caution
because of the cold start issues (i.e., not enough data being
available at the beginning of the session) [66]. The reason
is that DRL approaches are often trained offline with large

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 2

amounts of data, and then used online with limited data.
Such a gap between offline and online environments results
in inconsistent performance [66] caused by taking sub-optimal
actions. To avoid this issue, BoB includes an adaptive selector
for bandwidth prediction that initially uses a heuristic-based
controller. Once it collects sufficient input data, it switches to
a learning-based controller.

Note that we may use estimation and prediction interchange-
ably throughout this paper while keeping a small but important
difference adopted from [13]. An estimation is derived from
the raw measurements and/or samples using simple smoothing
techniques, whereas a prediction is derived from the smoothed
values and/or other data using learning-based techniques.

The contributions of this paper are three-fold:
1) We design BoB, a receiver-side hybrid bandwidth

prediction solution for RTC, which combines a heuristic-
based controller (inspired by the GCC algorithm) with
a DRL controller. The main feature of BoB is to
leverage the DRL benefits in adapting to diverse network
conditions while using the heuristic-based controller only
at the beginning of an RTC session when input data is
scarce.

2) We propose an adaptive technique to select between
the heuristic and learning-based controllers to avoid
inaccurate actions when using DRL for bandwidth
prediction.

3) We implement BoB on Microsoft’s OpenNetLab platform
termed AlphaRTC [5] and validate its performance gains
against the recent state-of-the-art solutions and winners
of the grand challenge organized by Microsoft and
OpenNetLab on the subject of bandwidth estimation
for RTC at ACM MMSys 2021 [3]. To train BoB’s
DRL model, we incorporate BoB into RTC GYM [3],
which emulates an RTC environment, and subsequently,
use the model for evaluation using real-world network
traces (online BoB model inference). We also evaluate
BoB in the wild using the OpenNetLab public Internet-
based testbed. Evaluation results show that BoB achieves
good prediction accuracy with high utilization and viewer
experience across many real-world network conditions.
The source code for BoB is publicly available at [11].

The rest of the paper is organized as follows: Section II
overviews some of the QoE optimization solutions for RTC
systems. Section III details the proposed learning-based
solution (BoB) for bandwidth prediction in RTC systems. The
evaluation and analysis are given in Section IV, followed by a
discussion on open directions in Section V. Finally, Section VI
concludes the paper.

II. RELATED WORK

Improving QoE for different video streaming services, such
as RTC, has gained massive attention in the last several
years. For this purpose, solutions have been developed with
techniques ranging from heuristics to learning-based methods
at the transport layer (e.g., congestion control) and application
layer (e.g., bitrate selection and bandwidth estimation). In
general, these solutions fall into three main categories.

A. Congestion Control Optimization

There are many congestion control solutions that in-
clude numerous variants of TCP. Here, we briefly present
some of them. Among the early solutions, TCP Reno [37]
and NewReno [29] both use a heuristic additive-increase-
multiplicative-decrease (AIMD)-based algorithm that consid-
ers packet loss as the key indicator for congestion. Later,
improved congestion control versions have emerged, such as
TCP Cubic [31] and TCP Vegas [18] (and then Copa [8]),
where the former tries to replace the AIMD function with
an improved one while the latter uses delay as the primary
indicator of congestion instead of packet loss. More recently,
BBR [19] uses delay instead of loss as the primary parameter
to determine the sending rate, allowing it to work near the
optimal point of full bandwidth utilization and low delay.
BBRv2 [20] aims to address the issues that were introduced
in the initial version: (i) unfairness, and (ii) excessive retrans-
missions in shallow-buffered networks.

As learning techniques became popular, there were attempts
to automatically perform the task of congestion control.
Winstein et al. [58] designed Remy, a distributed congestion
control solution for heterogeneous and dynamic network
environments. Remy formulates congestion control as an
optimization problem and implements an offline mapping
from all possible events to good actions using a dynamic
programming approach. Using online learning techniques,
PCC-Vivace [25] was proposed to select the best sending
rates automatically. Indigo [62] adjusts the congestion window
based on a trained model that employs imitation-learning,
while Aurora [39] leverages basic DRL techniques to
determine the sending rate. Orca [7] uses a hybrid approach
that combines a legacy congestion control solution with
modern DRL techniques. Zhu et al. [70] proposed NADA,
a congestion control scheme for interactive RTC services,
where the sender adjusts its sending rate based on either
implicit or explicit congestion signaling markings from the
network nodes. Johansson et al. designed SCReAM [41], a
hybrid loss and delay-based congestion control algorithm for
interactive video streaming applications. Interested readers are
encouraged to read more details in [62], [48].

B. Bitrate Selection Optimization

Fang et al. [27] designed an RL-based agent to control
the sending rate in an RTC system. Their preliminary results
showed good performance under challenging network condi-
tions. Tianrun et al. [55] designed Gemini, an ensemble frame-
work for bandwidth estimates in RTC. Gemini implements
a hybrid technique that switches between the heuristic-based
GCC rule and a DRL agent on the fly based on a safety factor.
This safety factor decides when Gemini falls back to the GCC
rule once the DRL model performs poorly and then switches
back to DRL when the performance improves. However,
based on our experimental test runs and results (Section IV),
Gemini suffers from three issues: (i) the switching technique
fails frequently when it tries to select the correct algorithm,
especially under challenging network conditions with a high
packet loss ratio (e.g., 3G/4G), (ii) the DRL algorithm uses a

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 3

simple neural network that does not consider the fluctuation
in the past bandwidth prediction values, and (iii) the DRL
algorithm fails to converge to perform the best bandwidth
prediction decisions. Such issues may result in bandwidth
overpredictions or underpredictions.

Similarly, Wang et al. [57] proposed HRCC, which uses an
RL agent to dynamically tune the values of GCC parameters
depending on the network variability instead of using fixed
values to boost bandwidth estimation accuracy. Our solution
(BoB) falls into this category and its objective of controlling
the receiving rate is similar to HRCC and Gemini. All these
solutions (HRCC, Gemini and BoB) use a GCC-like heuristic
algorithm. However, the key differences are in the DRL-agent
design. BoB differs from Gemini in the following aspects: (i)
the DRL architecture and set of the NN inputs, (ii) the adaptive
algorithm switcher, where during the streaming session,
Gemini keeps switching between the DRL and heuristic
algorithms, and BoB only uses the heuristic at the beginning
and then switches to DRL once more data is available, and (iii)
Gemini uses an ACK-based heuristic algorithm while BoB
uses a delay-loss based heuristic algorithm.

There exist other solutions for improving QoE in RTC,
such as rate adaptation and control like QARC [35] and
Proteus [60], hybrid error correction [32], and multipath [67].
In HTTP adaptive streaming, there exist multiple studies
on bitrate adaptation [16] that leverage different approaches,
such as software-defined networking [14], network-assisted
streaming [17], client-driven optimization [36], [54], control
theory [63], queuing theory [61], machine learning [45], [33],
[15], scheduling [40] and game theory [12].

C. Mixed Techniques

Fouladi et al. [30] designed Salsify as an RTC architecture
that includes a video codec and a network transport protocol.
Salsify uses per-frame rate adaptation and aims to work
under extreme network conditions by alleviating packet losses
and delays. To achieve this, Salsify employs a custom
encoding/decoding scheme not supported by existing hardware
codecs. Zhang et al. [67] proposed a solution that combines
a multipath transmission scheme with path selection for
improved transmissions in RTC. Here, the sender selects the
best path from several candidate paths using a multi-armed
bandit learning-based technique. Zhou et al. [69] proposed
Concerto, a machine learning-based bitrate adaptation system
aiming to maximize video telephony QoE. Concerto first
extracts high-level features of both layers (application and
transport) and then leverages deep imitation learning to
train models using massive data traces. In particular, it
considers historical packet losses, packet delays and the
sending/receiving rates in its neural network and imitates
the behavior of an expert (an Oracle that knows the actual
bandwidth values). Zhang et al. [66] developed an online
RL-based solution for rate decisions in RTC systems named
OnRL. The central insight behind OnRL is that RL models
trained offline in a simulator suffer from less satisfactory
performance when deployed under real conditions.

III. BOB: BANG-ON-BANDWIDTH

Predicting the bandwidth is one of the critical tasks in
RTC that directly impact the user experience. The essential
question is how to perform bandwidth prediction accurately,
considering the collected information from the Real-time
Transport Protocol (RTP, RFC 3550) packets. Information
that includes sending/receiving time and packet size can be
collected with every received RTP packet. This information is
used to compute the receiving rate, packet delay and packet
loss, all used as input to figure out how much available
bandwidth there is now and will be soon on the current
network path. Typically, bandwidth prediction is performed
using a heuristic-based scheme (e.g., GCC-based [1]). In a
learning-based approach, the above inputs are translated into
a state and reward (QoE), which are then mapped to an
action (bandwidth prediction). BoB achieves the benefits of
both approaches to perform the bandwidth prediction task as
explained below.

A. Overview

The overall workflow of BoB is depicted in Fig. 1. It
consists of two phases: BoB testing and BoB training.

1) BoB Training Phase: We use the AlphaRTC GYM simu-
lator [5], based on an ns-3 [51] and WebRTC implementation.
This simulator emulates a WebRTC session, utilizing various
network traces that were collected from real-world environ-
ments such as Belgium 4G/LTE [56], Norway 3G/HSDPA [50]
and NYU LTE [46]. Each network trace is comprised of a
throughput value, a round-trip time (RTT) and a packet loss
ratio. We implemented BoB as a bandwidth prediction module
within RTC GYM. During the WebRTC session, the simulator
collects and computes statistics (e.g., receiving rate, packet
delay and loss) from each received RTP packet, and then these
statistics are fed as inputs into BoB, which in turn predicts the
bandwidth at every time step. The predicted bandwidth is sent
to the sender via RTP Control Protocol (RTCP, RFC 3550)
feedback to adjust the encoding rate. During the offline phase,
we train our learning-based BoB model (refer to the DRL
controller in Fig. 2, with more details given in Section III-C2)
and this model will be used during the testing phase. We note
that because our experiments were conducted using a short
video sample, we did not retrain the BoB model during the
testing phase. However, if/when desired, it could be retrained
periodically.

2) BoB Testing Phase: We use the AlphaRTC implemen-
tation [5] with the BoB controller for a receiver-side hybrid
bandwidth predictor, as highlighted in blue color in Fig. 1.
The system consists of an (RTP) sender and (RTP) receiver.
The sender initiates the RTC video session with the receiver by
creating a UDP socket to send RTP packets and receive RTCP
feedback. The congestion control is adapted from GCC and
includes two controllers: a loss-based controller and the hybrid
BoB controller (it is called a hybrid as it has both a heuristic
delay-based controller and a learning-based DRL controller).
The BoB controller is placed at the receiver and responsible for
computing a bitrate (xr) based on the BoB bandwidth predictor
output, which is then fed back to the sender. Conversely, the

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 4

Video
Encoder

Packet
Pacer

Padder/FEC

Loss-based
Controller

Receive
Buffer

BoB
Controller

BoB - Bandwidth
Predictor

RTC GYM
(ns-3)

RTP
Packets

RTCP Feedback

Network
Traces

Input Bandwidth
Prediction

BoB Testing BoB Training

Decoding
Display

Fig. 1: Overall workflow of BoB.

loss-based controller is placed at the sender and is responsible
for computing the target sending rate (denoted by xs). The
target bitrate xs is fed to the video encoder, which attempts to
encode the video at a bitrate as close to the target as possible.
The encoded video is then forwarded to the packet pacer
responsible for regulating the bitrate produced by the encoder
when the bitrate of the encoded video deviates from the target.
Here, the encoder cannot change the rate as frequently as the
pacer rate. If the video encoder produces a bitrate higher than
the target, then the pacer is allowed to drain its queue at a
higher rate to alleviate queuing delays at the sender. On the
other hand, padding/forward error correction (FEC) can be
added, if desired, under certain circumstances. This way, on
average, the sending rate is expected to be equal to the target
bitrate xs.

B. System Architecture

BoB is a hybrid rate control solution implemented at the
receiver to improve the QoE for RTC systems. It combines
the strength of a heuristic-based rate controller with a DRL-
based controller to predict the bandwidth. As shown in
Fig. 1, BoB takes the historical packet-level statistics from
the network path as an input, where we denote the receiving
rate by ct, packet delay intervals by dt, packet loss ratio
by lt and the n most recent predicted bandwidth samples
by
−→
Xr

t = {xr
t−1, x

r
t−2, . . . , x

r
t−n}). It outputs a prediction

(denoted by a⋆t = xr
t) for the next t-th time window denoted

by Wt (in milliseconds), where t = {1, 2, . . . , T} and T is
the total number of time windows of an RTC session. The
predicted bandwidth value is then sent to the sender using
an RTCP feedback message, which in turn is passed to the
encoder. After that, the encoder uses this value as the target
bitrate and encodes the frames based on this target. Therefore,
BoB controls the receiving rate and helps to avoid issues
that could lead to poor QoE. In short, BoB replaces the
traditional, heuristic-only-based rate controller (e.g., based on
an unscented Kalman filter) by leveraging the power of DRL.
During the offline training phase, it uses the past and current
information of the incoming packets (at the transport layer)
as input to the neural network. Due to the nature of DRL,
BoB might deviate from the right decision in some corner
(uncovered) cases, which mostly happen at the beginning of an
RTC session. For this reason, we developed a simple but robust
adaptive selector that enables run-time switching between the

Loss-based Controller

BoB Controller

Heuristic Controller

Loss Ratio AIMD

Packet Arrival
Filter

Overuse Detector A
da

pt
iv

e
Th

re
sh

ol
d

AIMD

DRL
Controller

Adaptive Selector

RTP Packets

R
TC

P
Fe

ed
ba

ck
(x

r)

mt

σ

.

.

1D
C

on
v

1D
C

on
v

:

:

:

:

:

:

:

:

:

:

:

:

Sending Rate Selection
x* = min(xs, xr)

Receiver

Sender

mt

Fig. 2: Receiver-side BoB controller (blue) and sender-side
loss-based controller.

heuristic and DRL-based controllers. The adaptive selector
uses the heuristic-based controller at the beginning of an
RTC session when the DRL controller behaves sub-optimally
because of limited session data and the incorrect exploitation
actions. Then, it switches to the DRL controller once most
of the corner cases are covered and the predicted values
become accurate. Specifically, it uses a current percentage
value and a percentage threshold (i.e., fixed to 30%) that is
tuned empirically as a switching point between the heuristic-
based and DRL controllers. The current percentage value is
computed based on the difference and average in the predicted
bandwidth values given by the heuristic and DRL controllers.

As shown in Fig. 2, each endpoint (sender or receiver) runs
its controller. The receiver runs the BoB controller, whereas
the sender runs a loss-based controller. Next, we describe the
receiver-side BoB controller and the sender-side loss-based
controller in detail.

C. (Receiver-Side) BoB Controller

Here, we describe the BoB controller, which consists of (i)
a delay-based (heuristic) controller, (ii) a DRL controller, and

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 5

(iii) an adaptive selector.
1) Delay-Based (Heuristic) Rate Controller: At each time

window Wt, the delay-based rate controller predicts the
bandwidth xr

t as described in Algorithm 1. In this algorithm,
β = 1.08 and α = 0.85 are coefficients of the packet arrival
Kalman filter, which are tuned empirically based on our
experiments, σ is the controller’s state, ct is the receiving rate
measured in the last Wt = 200 milliseconds (ms), and x̄t is the
additive value that is determined by the rate control region. The
delay-based controller first uses the packet arrival filter that
divides and groups the received packets into 200-ms windows
and then computes the slope factor (denoted by mt) based on
a delay gradient between the groups of received packets and
judges the trend of the delay change. After that, mt is fed to
the adaptive threshold, which sets the threshold used by the
overuse detector. Then, the overuse detector produces a signal
that drives the network state (denoted by τ): underuse, overuse
or normal based on mt and threshold (see Fig. 2). The network
state is then mapped to a controller state increase, decrease
or hold using an AIMD algorithm to predict the currently
available bandwidth according to the prevailing network state.
If the controller state is decrease, then the controller sets
the rate control region to state NearMax. Once the controller
state is changed to increase and the rate control region is in
state NearMax, the controller sets x̄t = ct. Otherwise, if the
controller state is increase and the rate control region is in state
of MaxUnknown, the controller sets x̄t = β × ct. Therefore,
the controller additively increases xr

t based on the rate control
region.

Algorithm 1 Delay-based Rate Controller
1: function HEURISTICCONTROLLER(ct, dt, lt, Xr

t)
2: α← 0.85, β ← 1.08, region←MaxUnkown
3: for Each time window Wt, Wt > 0 do ▷ every 200 ms
4: σ ← GetControllerState() ▷ overuse detector
5: ĉt ← std(Ct) ▷ standard deviation of Ct

6: c̄t ← Average(Ct) ▷ Ct = {ct, ct−1, . . . , ct−n−1}
7: switch σ do
8: case ‘Increase’
9: if (ct > c̄t + 3× ĉt) then

10: τ ← ‘Underuse’ ▷ τ : network state
11: region←MaxUnkown
12: end if
13: if region == MaxUnkown then
14: x̄t ← β × ct
15: xr

t ← xr
t−1 + x̄t

16: else if region == NearMax then
17: x̄t ← ct
18: xr

t ← xr
t−1 + x̄t

19: end if
20: case ‘Decrease’
21: xr

t ← α× ct
22: xr

t ← Min(xr
t ,α× xr

t−1)
23: region← NearMax
24: case ‘Hold’
25: xr

t ← xr
t−1

26: τ ← ‘Underuse’
27: Return(xr

t)
28: end for
29: end function

2) Learning-Based (DRL) Rate Controller: BoB imple-
ments an RL agent that interacts with the environment encom-
passing the communication process between the sender and

receiver in the RTC system. For the BoB model training, the
packet-level statistics (input) are collected periodically during
a fixed time window of Wt = 200 ms and aggregated as
the environment state. Subsequently, the agent predicts the
bandwidth that represents an action value. Formally, the RL
agent interacts with the environment that defines a state space
denoted by S. At each time window Wt (at time epoch t), the
RL agent receives a state st ∈ S from the environment and
then takes an action at ∈ A (bandwidth prediction for the next
time window Wt+1) while it receives a reward rt ∈ R. The
essential objective of the agent is to find an optimal policy
π⋆ : S → A that maps states-to-actions, maximizing the
overall reward (i.e., finding the bandwidth that maximizes the
receiving rate while minimizing the packet loss and delay).
After the bandwidth prediction action at is taken, the BoB
environment observes the new receiving rate, packet loss,
delay and the predicted bandwidth, and transits to the next
state st+1 ∈ S, while updating the reward rt+1 ∈ R. The
DRL controller is depicted in Fig. 3.

a) Input State Space and Network: At each time
window Wt, the state input is a 1×11 vector of 11 dimensions
defined as st = {ct, dt, lt,

−→
Xr

t }, comprised of the receiving
rate ct (bps), packet delay1 dt (ms), packet loss ratio (%) and
the n most recent bandwidth prediction samples

−→
Xr

t (bps).
We normalize each state input using a linear-to-log()
function in a value-range [0,1]. We then feed the current
state st as the input to the actor-critic network that comprises
two neural networks. As depicted in Fig. 4,

−→
Xr

t is fed
into a 1DConv (LSTM) layer in time order for feature
extraction. The main insight behind using LSTM is capturing
the bandwidth variation’s temporal characteristics. Thus, the
accuracy of the bandwidth prediction can be improved. Other
inputs are fed into a linear, fully-connected (FC) layer with
a Rectified Linear Unit (ReLU()) activation function. After
that, the input layers are concatenated and finally fed into
the hidden layers. Results from the concatenation are then
aggregated in three levels of FC layers that use 514, 320 and
64 neurons, with a ReLU() activation function with a slope
of 0.5.

We use the same structure for both actor and critic
networks, but with different outputs. For the actor network,
we use a softmax() distribution function followed by a
logarithm (log_softmax()) as the last FC layer with L2
normalization of the network, resulting in an output in the
range from 0 to 1. The output (selected action) is then mapped
to a value between 0.01 to 8 Mbps (as fixed in AlphaRTC [5],
[27]) as the bandwidth prediction using a log-to-linear()
function. The critic network is similar to the actor without
log_softmax() in the last layer, resulting in output state-
values, denoted by V πθ (st, w) (value function), that help the
actor network update the policy distribution in the direction
suggested by the critic network (such as with policy gradients).
We note that each 1DConv layer uses a 3 × 3 convolution
with 64 filters to extract implicit features, and is followed by
a ReLU() activation function that tries to maintain a non-zero
policy gradient over the whole training phase. Therefore, the

1The packet delay is the average RTT.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 6

RTC GYM Env (ns-3)
ct

..

Receiving Rate

Packet Delay

Packet Loss Ratio

Past Bandwidth
Values

State st

PPO
Softmax
Policy
πθ(st, at)

Actor-Critic Network
Actor Network

Critic Network

ReceiverAction a*t

Reward rt

RTCP
Feedback

Senderdt

lt

1D
C

on
v

1D
C

on
v

xr
t-1

xr
t-n

..

..

:

:

:

:

:

:

V(st,w)

:

:

:

:

:

:

Video
Traffic

Observed State

Update Agent

Fig. 3: Learning-based (DRL) rate controller for BoB.

st

a*t

Critic Network

Actor Network

maps to
0.01~8 Mbps

C
on

ca
t log_softmax()

FC Linear Layer

Input Layer

Output Layer

Value: V(st,w)

RTC GYM
(ns-3)

Network
Traces

Update Agent

Fig. 4: The neural network design for training in BoB.

vanishing gradient problem is avoided while the training time
is reduced.

b) Action Space: In each time window Wt, BoB policy
π⋆
θ maps st to a compact action space whose values range

between 0.01 and 8 Mbps. Specifically, A = {a0 : 0.01 −
2 Mbps, a1 : 2− 4 Mbps, a2 : 4− 6 Mbps, a3 : 6− 8 Mbps},
representing an appropriate range of bandwidth prediction for
RTC systems. Therefore, the output is a 1 × 4-dimensional
vector that identifies the state-action probabilities produced
by log_softmax(). Then, π⋆

θ : st → a⋆t maps the state
to a suitable action (a⋆ = [a0,a3]) based on the state-action
probabilities, i.e., the agent policy selects the action with the
highest probability.

c) Reward Function: The reward rt is calculated after
each action at is taken to ensure that BoB can learn from
past experience. It reflects the performance of the bandwidth
prediction accuracy according to the user QoE. At each time
window Wt, we define rt based on [27] as follows:

rt = linear-to-log(ct)−min(dt/1000, 1)− lt.

The agent is rewarded when it receives more packets (leading
to higher QoE) and penalized when packet delay/loss increases
(leading to lower QoE).

d) Training Algorithm: We use the Advantage Actor-
Critic with on-policy Proximal Policy Optimization (PPO) and
the Adam optimizer for policy updates. During the training,
the objective of BoB is to maximize the total discounted
cumulative reward, which is expressed as:

Rt =

Tπθ∑
t̄=t

γ t̄−t × rt,

where Tπθ
denotes the batch size for updating the gradient

policy (fixed to 4,000 time windows per episode in our
simulations), γ ∈ [0, 1] serves as a discount factor (usually
customized as 0.99 or 0.9) and Rt represents the discounted
cumulative reward from time t to the end of the RTC session.
The objective of the actor network is to find a policy π :
π⋆
θ(s, a) → [0, 1] to maximize Rt, where π⋆

θ : s → a⋆ is the
probability distribution over different actionsA. The stochastic
policy π⋆

θ is responsible for selecting an action a⋆ with the
highest probability. On the other hand, the critic network
is responsible for making an objective assessment for each
current state st using a value function V πθ (st, w).

In the training algorithm, we use PPO and the Adam
optimizer to update the gradient policy such that Rt is
maximized at every training episode as:

▽R̄t =
1

Θ

Θ∑
θ=1

Tθ∑
t=1

Aπθ
t (st, at)▽ log πθ(at, st),

where Θ is the total number of episodes, Aπθ (st, at) (=
Rt−bt) is the advantage function that expresses the difference
in the cumulative reward between the actual value after
selecting the action at based on policy πθ at st and the
expected value. The advantage function is calculated as a
function of Rt and baseline bt that has a significant impact
on the convergence of the total cumulative reward Rt. In
the DRL model, we found Aπθ did not work well. Hence,
we replaced it with Aπθ (st, at) = Qπθ (st, at) − V πθ (st, w).
Qπθ is computed by the actor network, which uses the k-step
Temporal Difference (TD) method given by:

Qπθ (st, at) =

k=Θ−1∑
k=0

γkrt+k + γΘV (st+Θ, w).

For each training step, the actor network strives to maximize
Rt through maximizing Aπθ , i.e., making better action
decisions than the current policy π. Therefore, the parameter
θ of the actor is updated via a stochastic gradient ascent
algorithm as follows:

θ ← θ + α

Tθ∑
t=1

Aπθ
t (st, at)▽θ log πθ(at, st),

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 7

where α is the learning rate and ▽θ log πθ(at, st) represents
the dynamics that parameter θ accounts for in order to achieve
the objective. It is worth noting that BoB leverages dropouts
with probability (p = 0.5) to add a regularization term to
the update of the actor network, which helps to alleviate
overfitting issues. Such a regularization term can be considered
the entropy of the probabilities over the bandwidth prediction
decisions H(πθ(.|st)), which promotes exploration and avoids
severe overfitting.

The critic network is responsible for making an objective
assessment for all the states ∀st ∈ S during the training. To do
so, the critic network uses the standard TD method to compute
the loss function and minimize its value. Hence, the parameter
w of the critic network is updated through a stochastic gradient
descent algorithm as follows:

w ← w − α

Tw∑
t=1

▽θ(rt + γV πθ (st+1, w)− V πθ (st, w))
2,

where V πθ (st, w) and V πθ (st+1, w) are the objective
assessments for st and st+1, respectively, from the critic
network.

We update the policy πθ periodically every k steps < Tθ

(update interval) using PPO with clipped objective and the
Adam optimizer. The PPO aims to optimize (via Adam) the
following clipped objective function:

LCLIP
θk

(θ) = E
[Tθ∑

t=0

[min(ratiot(θ), 1− ε, 1 + ε)Aπk
t]

]
θk+1 = argmax

θ
LCLIP
θk

(θ),

where E denotes the empirical expectation over time steps,
ratiot(θ) (= πθ(st, at)/ πθold(st, at)) is the ratio of the
probabilities under the new and old policies, and ε is the clip
hyperparameter (usually fixed to 0.1 or 0.2).

3) Adaptive Selector: The main purpose of the adaptive
selector is to decide when to switch between the heuristic
and learning-based rate controllers. With this functionality,
we enable a hybrid bandwidth prediction and increase the
accuracy of the DRL controller in the long term. Bandwidth
prediction is likely to be inaccurate (because of bandwidth
underprediction caused by the lack of data; i.e., transmitted
packets from the sender to the receiver) at the beginning of a
session, since the values returned from the DRL controller at
that time are mostly related to the training dataset.

To overcome this possible inaccuracy, we compare the
prediction results obtained from the DRL controller with those
from the heuristic controller and validate their accuracy. To
do so, we use symmetric mean absolute percentage error
(sMAPE). First, we compute the absolute difference (Dift)
between the predicted bandwidth values given by the heuristic
controller (Heuristicbwt) and the DRL controller (DRLbwt).
Second, we compute the average predicted bandwidth value
(Avgt) based on both controllers. If the output from the
percentage (Dift

Avgt
) is equal to or more than 30%, the algorithm

decides not to use the DRL controller and feeds the output
of the heuristic controller to the DRL controller for later
use. In time, the percentage between the outputs of the two

TABLE I: Average results in terms of sMAPE and total score
for different percentage values of the adaptive selector.

% 5 10 20 25 30 40 50

sMAPE 0.75 0.68 0.27 0.18 0.13 ↓ 0.43 0.54
Total score 55 59 70 78 93 ↑ 61 60

controllers reduces and the DRL controller starts making a
better prediction. The essential steps of the adaptive selector
are highlighted in Algorithm 2. We note that this algorithm
also monitors the difference between DRL and heuristic
controllers in case of deviations (corner cases) from the
expected converged predictions from both controllers. If a
deviation happens, it switches back to the heuristic controller.
However, we observed this situation only occasionally under
some network conditions. Once the DRL controller starts
performing well, it keeps doing so in the long run.

We decided the threshold of 30% to switch between BoB
controllers empirically. We performed extensive experiments
to find a suitable percentage that resulted in high bandwidth
prediction accuracy and good scores (defined in Section IV-C)
in the long term (i.e., the whole live video session). In
particular, we ran many tests with various percentage values,
from 5% up to 50%, using different network conditions (see
Section III-A1) and video content (same as given Section IV).
Table I, summarizes the outcome over all the tests. As one can
see, the percentage of 30% achieves the best performance in
terms of the lowest sMAPE and highest total score compared
to the other percentages.

Algorithm 2 Adaptive Selector
1: function ADAPTIVESELECTOR
2: for Each time window Wt, Wt > 0 do
3: Heuristicbwt ← HeuristicController(ct, dt, lt, Xr

t)
4: DRLbwt ← DRLController(ct, dt, lt, Xr

t)
5: Dift = |DRLbwt −Heuristicbwt|
6: Avgt =

DRLbwt +Heuristicbwt

2
7:
8: if Dift

Avgt
≥ 0.3 then

9: xr
t ← Heuristicbwt

10: else
11: xr

t ← DRLbwt

12: end if
13: end for
14: Return(xr

t)
15: end function

D. (Sender-Side) Loss-Based Controller

The sender and receiver controllers complement each other
to select a suitable bitrate. The loss-based controller is located
at the sender and is responsible for selecting the sending rate
based on the packet loss ratio. At every time window Wt, the
sender receives an RTCP feedback message from the receiver
carrying the predicted bandwidth xr

t and loss ratio lt computed
at the receiver. Based on this, the sender selects the sending
rate xs

t as follows:

xs
t =


xs
t−1 × (1− 0.5× lt), lt > 0.1;

1.05× xs
t−1, lt < 0.02;

xs
t−1, otherwise.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 8

Here, the selected sending rate xs
t changes depending on the

loss ratio lt where: (i) xs
t remains constant in case lt is small

(0.02 ≤ lt ≤ 0.1), (ii) xs
t decreases multiplicatively in case

lt is high (lt > 0.1), and (iii) xs
t increases multiplicatively in

case lt is very small (lt < 0.02). The final selected sending rate
is then computed as follows: x⋆

t = min(xr
t , x

s
t). This value x⋆

t

is provided to the encoder as the target bitrate. The chosen loss
ratio ranges are given by GCC, as referenced from [22].

E. Parameter Choices and Training Setup

We fixed α and β at 0.85 and 1.08, respectively, in the BoB
delay-based controller. These values have been empirically
tuned based on our experiments and our finding is also aligned
with [22]. For the BoB DRL controller, training parameters can
impact its performance, so we empirically set the parameters
as follows: the maximum number of episodes N to 2,000, the
policy update interval Tθ to 4,000 time windows, the PPO
k-steps to 20, the PPO clip parameter to 0.2, the discount
factor γ to 0.99, the Adam learning rate lr to 3×10−5, the
Adam β to 0.999, the number of recent samples n to eight,
and the time window Wt during which the states are captured
to 200 ms. To train our DRL model, we used around 500
network traces in total from different datasets: The ACM
MMSys’21 grand challenge on bandwidth estimation in RTC
dataset [3], Belgium 4G/LTE [56], Norway 3G/HSDPA [50],
NYU LTE [46], FCC [28], and Synthetic [12]. We randomized
and divided them into two sets: 80% for BoB training and 20%
for BoB testing. With 80–20 train-test split, we performed
5-fold walk-forward cross-validation on each dataset. The
training output is one DRL model with .pth extension, which
we use for the online inference and our results are presented
in Section IV.

F. BoB Implementation and Challenges

To implement BoB, we used the platform, named
AlphaRTC [5], provided by Microsoft’s grand challenge on
RTC [3] that comprises two main parts: offline training and
online testing.

1) Offline Training: The trace-driven simulator mainly
uses PyTorch v1.10 [47] for the deep reinforcement learning
components and implements the GYM for a typical RTC
system. The GYM uses ns-3 and WebRTC applications to
simulate a sender-receiver RTC environment. The BoB model
training uses real-world network traces to simulate the network
conditions between the sender and receiver in terms of
available bandwidth, RTT and packet loss.

2) Online Testing: The AlphaRTC [5] framework is a fork
of Google’s WebRTC project with machine learning-based
bandwidth estimation. We use this framework and plug in the
BoB bandwidth predictor for RTC system testing using real-
world traces. The BoB controller is implemented in Python
and consists of about 1,700 lines of new code, available
online at [11]. In this code, the BoB controller is implemented
as a class under file name BandwidthEstimator bob.py,
which comprises of three functions: AdaptiveSelector(),
HeuristicController() and DRLController().

3) Challenges: It is well known [66], [69] that any
DRL model requires significant data to converge to the
best bandwidth accuracy prediction because of the training-
to-testing gap issue [66]. Achieving the best bandwidth
prediction requires a ramp-up during the live video session,
which might hinder the overall performance of an RTC
system. For example, during the design of BoB, we tried
to use the DRL controller from the beginning of the video
session, but we observed that our model experienced frequent
bandwidth underprediction issues, which adversely impacted
its convergence during the session. We also observed that the
underprediction remained for some time because the penalties
(loss, delay) were close to zero due to the initial scarcity of
data history, so the model thought it was performing well. This
is also one of the known issues with a DRL model, which
trains an agent by giving it feedback (QoE; a combination
of the receiving rate, delay and loss) for decisions while
interacting with an environment. Therefore, this confirms
why a DRL model requires some time to converge to the
best bandwidth decisions. To avoid these issues, we used
the heuristic controller to perform the bandwidth prediction
decisions and at the same time collected enough data, allowing
fast convergence of the DRL controller to the best decisions
once the selector switched to it.

For all considered network traces, we found that the BoB
DRL model requires on average 500 training episodes to
converge to the best bandwidth prediction decisions. In the
testing phase, we found that at the beginning of a video
session, the BoB DRL model requires at most 10–15 seconds
of packet transmissions based on the heuristic controller
to start performing well (refer to Section III-C3). This is
important at the beginning of a live video session as the DRL
model requires the latest eight bandwidth prediction values as
one of the input channels of the NN. These values are given by
the heuristic controller. Since the heuristic controller is purely
based on the last value of the heuristic such as packet loss
or delay to make bandwidth prediction decisions, it requires
minimal data. However, the heuristic controller cannot easily
be generalized to various network conditions as it heavily
depends on some hardcoded configuration parameters. As a
result, it might suffer from inaccurate bandwidth predictions
under some network conditions. This motivates and confirms
the hybrid selection choice for BoB.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the effectiveness of BoB against
the purely heuristic-based (GCC) approach and the latest
hybrid (heuristic and learning-based) approaches proposed for
RTC systems including Gemini [55] and HRCC [57]. Our
evaluation is divided into two setups: emulation-based and
Internet-based.

A. Evaluation Setups

1) Emulation-Based Setup: In order to evaluate the
effectiveness of BoB over an end-to-end controlled system,
we used a physical machine running Ubuntu 18.04 LTS OS
with dual 20-core Intel E5-2630 v4 @ 2.20GHz processors

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 9

and 192 GB memory. We ran the trace-driven framework
(AlphaRTC) in an isolated environment using the Docker
container provided by the Microsoft team and we installed
extra library dependencies for the tc [4] command to be able
to throttle the bandwidth between the sender and receiver
and introduce packet loss/delay following the network profiles
highlighted in Fig. 5. The Estimator class, contained in the
source file Bandwidth Estimator.py, is used by the Docker
environment to call the desired bandwidth estimator (BoB,
HRCC or Gemini) and the get estimated bandwidth()
method of the Estimator class is invoked as packets arrive in
the setup. Each solution logs the predicted bandwidth values,
bandwidth prediction accuracy and error, receiving rate score,
delay score, packet loss score, network score, video score and
total score.
▷ Network Profiles. The network profiles we used in the
evaluation, re-purposed for this work from [15], are shown
in Fig. 5. The profiles are extracted randomly from 20% of
network traces assigned for testing, namely: LTE, Twitch,
Cascade, FCC Amazon and Synthetic. For FCC Amazon and
Synthetic, we fixed the delay to 50 ms and loss to 0.08%.
▷ Video Sample. For the video sample, we used the Big
Buck Bunny video sample [2] with 24 fps and 640×360
pixel resolution that was approximately one minute long.
The simulation configuration files are given in [5], including
receiver pyinfer.py and sender pyinfer.py and updated with
the test video source and properties. In these files, there is also
an autoclose parameter that specifies the duration (in seconds)
of the system test to be performed. In our simulations, this
parameter was set to 60 seconds.

2) Internet-Based Setup: OpenNetLab provides an Internet-
based public testbed (https://opennetlab.org/) that creates a
unified measuring platform to validate the performance of
RTC-based solutions, including BoB, under unseen network
conditions in the wild through initiating several end-to-
end RTC calls. This testbed includes wired, wireless and
mobile networks and heterogeneous nodes with support from
universities throughout Asia. The nodes are in China (Beijing,
Hefei, Nanjing, Lanzhou, Shenzhen and Hong Kong), South
Korea (Seoul and Daejeon) and Singapore (Queenstown). The
set of nodes in the testbed is coordinated using Azure Backend
microservices.

To test the end-to-end RTC calls with the BoB solution
versus competitors (heuristic-based, Gemini and HRCC) over
the Internet, we submitted a performance validation job by
uploading the BoB trained DRL model and algorithms. We
also specified the predefined resource (compute node and
network type) and predefined scenarios (A, B and C) via a
Web-based frontend. For each video sample, each scenario
was run five times in a round-robin manner. These scenarios
are highlighted in Table II and Fig. 6 shows the setup of the
testbed. To validate the performance of BoB’s competitors, we
used the same process.
▷ Network Profiles. The public Internet-based testbed offers
three types of network characteristics: High, Medium and Low
Bandwidth (BW). The details of each network are highlighted
in Table II.
▷ Video Sample. Each scenario (Table II) runs with

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Cascade LTE Twitch FCC Amazon Synthetic

Fig. 5: The network profiles used in the simulations.

KAIST

WebRTC
receiver
BoB

Controller

LZU

WebRTC
Sender

Path

Fig. 6: An example of the OpenNetLab public Internet testbed.

different types of video samples including animation, movie,
conversation, presentation and screen sharing over a remote
desktop. Each video is five minutes long with various sets of
frame rates (fps) and resolutions.

B. Comparisons

We compared BoB against three approaches: the heuris-
tic approach, the winner (Gemini [55]) and runner-up
(HRCC [57]) of the ACM MMSys’21 grand challenge on
bandwidth estimation in RTC, organized by Microsoft. We
selected Gemini and HRCC because (i) they represent the
latest solutions using a hybrid approach, (ii) they are the
winner and runner-up of the grand challenge, and (iii) their
implementations are available in AlphaRTC, which allows us
to replicate their claimed results.

C. Evaluation Metrics

We tested the efficiency of BoB and other approaches using
the following evaluation metrics:

1) Bandwidth Prediction Error and Accuracy: The band-
width prediction error and accuracy are calculated based on
symmetric mean absolute percentage error (sMAPE). The
sMAPE is an accuracy measure based on percentage (or
relative) errors between predicted bandwidth values (xt) and
actual network profile values (yt) for the total samples T , and
its function is given as follows:

sMAPE =
1

T
×

T∑
t=t

|yt − xt|
(yt + xt)/2

, accuracy = (1− sMAPE
2

)×100

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://opennetlab.org/

IEEE TRANSACTIONS ON MULTIMEDIA 10

TABLE II: Scenarios for the public Internet tesbed.

Network
Profile

Sender
Node

Receiver
Node

Path
Bandwidth

Avg.
RTT

A High
Bandwidth

Lanzhou
(Wired)

Seoul
(Wired) > 100 Mbps 30 ms

B Medium
Bandwidth

Beijing
(Mobile)

Hong Kong
(Wired) 2-3 Mbps 62 ms

C Low
Bandwidth

Beijing
(Weak wireless)

Hong Kong
(Wired) < 1 Mbps 55 ms

2) Network Score: The network score (denoted by Ns) is
computed as a combination of three metrics: delay score (ds),
loss score (ls) and receiving rate score (cs), as follows:

Ns = w1 × ds + w2 × cs + w3 × ls,

where

ds = 100× max delay − delay 95th

max delay −min delay
,

cs = 100× c

ground truth c
, and

ls = 100× (1− l).

Here, w1 = w2 = 0.1 and w3 = 0.5 are the
weights of the network score. The max delay is fixed to
400 ms and min delay is the minimum delay achieved
during the RTC session. The ground truth c refers to the
corresponding average bandwidth that can be obtained in an
ideal environment (such as when there is no loss and no
delay). Since we have the network profiles for the experiments,
it is easy to compute ground truth c, which is fixed as the
overall average actual bandwidth value in each corresponding
network profile (Cascade: 220 Kbps, LTE: 741 Kbps, Twitch:
335 Kbps, FCC Amazon: 676 Kbps, Synthetic: 581 Kbps).
Finally, l is the packet loss ratio.

3) Video Score: The video score (denoted by Vs) is
calculated with respect to video perpetual quality based on
Video Multi-Method Assessment Fusion (VMAF)2 as follows:

Vs = 100× vmaf score,

where vmaf score is the average VMAF value (ranges between
0 and 1) computed based on per-frame VMAF values resulting
from the source and encoded video.

4) Total Score: The total score (denoted by Ts) is computed
as a combination of Ns and Vs, as follows:

Ts = Ns + w4 × Vs,

where w4 is the weight factor associated with the video score
which is fixed to 0.3, and

∑4
i=1 wi = 1. We note that the

network, video and total score formulation was originally
supplied by the Microsoft grand challenge organizers [6].
These scores cover all the main metrics to evaluate the QoE
performance of an RTC system, which are widely used in
many papers such as [55], [66], [69], [27]. For instance, the
video score uses VMAF, the widely used metric proposed by
Netflix to compute video perceptual quality, while the network
score combines the important metrics for an RTC system
including packet loss, delay and receiving rate.

2Available [Online]: https://github.com/Netflix/vmaf

D. Results and Analysis

We now compare and describe the performance of different
solutions. For statistically meaningful results, we repeated
all experiments five times for each solution with the same
configuration and all the presented results show the averages
over the five runs. We divided our results into two setups:
emulation-based and Internet-based.

1) Emulation-Based Results: First, we analyze the
performance in terms of bandwidth prediction accuracy that
each solution achieves. Then, we compare the performance
of different solutions in terms of network, video and total
scores, expressed with their metrics.

▷ Bandwidth Prediction Accuracy. The time series plots for
different solutions for every network profile are depicted in
Fig. 7. The overall average bandwidth prediction accuracy
and prediction error in terms of sMAPE are provided in
the first two columns of Table III. The red solid lines
in Fig. 7 represent the actual bandwidth for the network
profiles. A superior solution must determine a bandwidth
within a close proximity of these solid lines. Overall, we
notice that BoB achieves the best bandwidth prediction
accuracy (and the lowest prediction error). Specifically, BoB
improves the overall average bandwidth prediction accuracy
by 67.63% (Cascade: 61.72%, LTE: 41.71%, Twitch: 81.64%,
FCC Amazon: 73.27%, Synthetic: 79.80%), and reduces
the overall average bandwidth prediction error by 49.11%
(Cascade: 38.95%, LTE: 46.45%, Twitch: 62.14%, FCC
Amazon: 71.07%, Synthetic: 26.94%) compared to the other
solutions across all the network profiles. However, only in
the Cascade profile, HRCC is slightly better than BoB in
terms of the average bandwidth prediction accuracy with a
marginal improvement of 0.19%. Therefore, HRCC was able
to achieve a better receiving rate, network, video and total
scores compared to BoB in the Cascade profile.

Looking at the results further, BoB is able to achieve a
higher average receiving rate score of 73.64%, compared to
Gemini (45.28%), HRCC (54.77%) and Heuristic (31.78%)
across all the network profiles. This comes at a price of
a smaller delay score and a comparable loss score for
BoB in each network profile. In fact, BoB’s formulation
strives to ensure a good trade-off between these conflicting
metrics (i.e., receiving rate, delay and packet loss). Such
a trade-off by BoB is confirmed through achieving higher
network, video and total scores with an improvement of
35.85% (Cascade: 29.21%, LTE: 31.53%, Twitch: 58.00%,
FCC Amazon: 45.77%, Synthetic: 14.74%), 5.90% (Cascade:
6.41%, LTE: 4.59%, Twitch: 6.73%, FCC Amazon: 7.40%,
Synthetic: 4.37%), and 23.03% (Cascade: 18.38%, LTE:
18.95%, Twitch: 36.19%, FCC Amazon: 31.49%, Synthetic:
10.12%), respectively, compared to its competitors across all
five network profiles.

Compared to BoB, we also observe that other solutions
generally suffer from either bandwidth overprediction or
underprediction due to their designs. As shown in Fig. 7,
Gemini tends to underutilize the bandwidth, which expectedly
produces a low receiving rate score but also a higher packet

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://github.com/Netflix/vmaf

IEEE TRANSACTIONS ON MULTIMEDIA 11

0

200

400

600

800

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)
Actual Bandwidth BoB Gemini Heuristic HRCC

(a) Profile: Cascade

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(b) Profile: LTE

0

250

500

750

1000

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(c) Profile: Twitch

0

400

800

1200

1600

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(d) Profile: FCC Amazon

0

500

1000

1500

0 10 20 30 40 50 60
Time (s)

B
an

dw
id

th
 (

K
bp

s)

Actual Bandwidth BoB Gemini Heuristic HRCC

(e) Profile: Synthetic

Fig. 7: Actual and predicted bandwidth for different network profiles.

delay and loss score than BoB and HRCC. This happens
because Gemini fails to timely switch between the learning
and heuristic-based prediction. For example, for the FCC
Amazon profile (see Fig. 7d), the learning-based prediction
for Gemini fails to track the increase in the actual bandwidth.
Similarly, HRCC generally fails to learn suitable parameters
for the heuristic-based algorithm, which leads to a bandwidth
underprediction issue for various network profiles, which is
most visible in Figs 7b, 7c and 7d. As a result, HRCC suffers
from poor video quality. This also confirms that HRCC is more
suitable for more stable, low-bandwidth scenarios.

One interesting observation is that the Heuristic solution is
not able to recover from bandwidth underestimations during
the whole RTC session, which contributes to poor video
quality (see the score results in Table III). This outcome
confirms the difficulty and importance of bandwidth prediction
in RTC [3], and also shows how urgent it is to have
a hybrid solution that combines learning- and heuristic-
based algorithms. In contrast, BoB, harmoniously fuses both

0

25

50

75

100

Cascade LTE Twitch FCC Amazon Synthetic
Network Profile

A
ve

ra
ge

 T
ot

al
 S

co
re

BoB Gemini Heuristic HRCC

Fig. 8: Average total score for different network profiles
(emulation-based).

algorithms and tries to predict the bandwidth within a small
margin of its actual value during the RTC session, and works
equally well across different network profiles.
▷ Scores and Their Metrics. We evaluate different solutions
in terms of network, video and total scores and their metrics

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 12

TABLE III: Average simulation results for different network profiles (↑: higher is better, ↓: lower is better).

Avg. Prediction
Accuracy (%)

Avg. Prediction
Error (sMAPE)

Avg. Receiving
Rate Score (%)

Avg. Delay
Score (%)

Avg. Loss
Score (%)

Avg. Network
Score (%)

Avg. Video
Score (%)

Avg. Total
Score (%)

Cascade

BoB 84.89 0.30 ↓ 63.26 15.71 95.45 42.75 91.38 70.16
Gemini 74.85 0.50 46.56 35.78 97.64 36.62 87.73 62.94
HRCC 85.06 ↑ 0.30 ↓ 63.91 ↑ 21.27 91.69 43.25 ↑ 92.23 ↑ 70.92 ↑
Heuristic 31.22 1.38 22.36 37.22 ↑ 99.38 ↑ 24.84 78.79 48.48

LTE

BoB 78.94 ↑ 0.42 ↓ 56.98 ↑ 32.05 88.57 40.55 ↑ 92.59 ↑ 68.33 ↑
Gemini 68.07 0.64 33.35 71.31 99.01 33.71 88.85 60.36
HRCC 63.65 0.73 35.77 38.00 97.51 31.44 91.82 58.98
Heuristic 42.63 1.15 20.39 77.56 ↑ 99.66 ↑ 27.92 85.17 53.47

Twitch

BoB 88.84 ↑ 0.22 ↓ 94.87 ↑ 52.11 92.29 61.88 ↑ 92.80 ↑ 89.72 ↑
Gemini 82.85 0.34 60.39 45.24 98.49 ↑ 44.57 91.12 71.91
HRCC 65.92 0.68 74.74 54.57 ↑ 97.06 52.53 91.50 79.98
Heuristic 29.33 1.41 31.77 29.81 95.98 28.46 79.36 52.27

FCC Amazon

BoB 86.60 ↑ 0.27 ↓ 100 ↑ 60.02 97.17 65.72 ↑ 95.19 ↑ 94.28 ↑
Gemini 63.91 0.72 55.09 82.56 99.71 45.77 88.14 72.21
HRCC 50.42 0.99 60.36 79.52 99.84 48.11 91.46 75.55
Heuristic 40.74 1.19 44.91 93.72 ↑ 100 ↑ 41.83 86.45 67.76

Synthetic

BoB 65.88 ↑ 0.68 ↓ 53.08 ↑ 28.58 96.82 39.08 ↑ 92.59 ↑ 66.85 ↑
Gemini 62.15 0.76 30.99 65.77 97.94 31.87 84.08 57.09
HRCC 60.43 0.79 39.06 42.28 97.56 33.52 92.11 61.15
Heuristic 20.31 1.59 39.49 75.32 ↑ 99.42 ↑ 37.22 90.35 64.32

(see Section IV-C). The average total scores are given in Fig. 8
and the individual metrics are tabulated in Table III. Fig. 8
shows that BoB has the highest performance in the LTE,
Twitch, FCC Amazon and Synthetic network profiles.

For the Cascade profile, BoB and HRCC perform similarly
in terms of the total score and average prediction error but
differ in terms of delay and loss scores. BoB can cause
increased delays without significantly increasing the packet
loss, whereas HRCC has less delay but more packet loss. At
the end of the RTC session, the network scores were quite
close with these different trade-offs. In the LTE profile, BoB
uses higher receiving rates with a delay and loss cost, which
still results in a better video score.

In the Twitch profile, BoB has the highest average
bandwidth prediction accuracy, again resulting in high bitrates
without inducing much delay and loss. The reason is that
BoB can upshift fast and utilize the available bandwidth after
the first 20 seconds (which confirms the convergence of the
learning-based algorithm to the optimal solution), where both
Gemini and HRCC still underpredict the bandwidth most of
the time.

Fig. 7d illustrates that BoB has the best fit for the actual
bandwidth values, especially after the 25th second. As a result
of its accurate bandwidth prediction, BoB achieves the highest
receiving rate score and a loss score slightly lower than the
best one achieved by the other solutions. Synthetic is one of
the most challenging profiles as it exhibits fast and sudden
changes in the bandwidth. Even if the bandwidth is changing
frequently, the prediction error is the smallest with BoB.
Moreover, BoB achieves the highest receiving rate score.

Overall, BoB achieves the smallest average prediction
error with a value of 0.38 and the highest average prediction
accuracy with a value of 81.03%. As for the Heuristic, the
prediction accuracy is the worst yet it has the highest delay
and loss scores. The overall indicators imply that there is
further room for improvement in RTC systems, where the
bandwidth prediction and bitrate selection should be jointly
considered to achieve better application performance, i.e.,
to use the full available bandwidth for the media without
inducing significant packet delay or loss under diverse
network conditions.

▷ Results Summary. In all the considered experiments,
BoB performs better in most performance metrics and
outperforms Gemini, HRCC and Heuristic solutions under
various network conditions. This is mainly due to BoB’s
design that combines heuristic and learning-based controllers
for bandwidth prediction and bitrate selection for RTC
systems. The percentages of improvement (%) achieved by
BoB versus other solutions are calculated by comparing BoB’s
results with the ones obtained by each solution. The results are
summarized in Table IV.

TABLE IV: Summary of the average results. Percentage
improvements of BoB over the other solutions, at scale.

BoB vs. Avg. Prediction
Accuracy (%)

Avg. Network
Score (%)

Avg. Video
Score (%)

Avg. Total
Score (%)

Gemini 15.62 28.42 5.67 19.42
HRCC 27.87 19.76 1.19 12.21
Heuristic 159.39 59.37 10.84 37.45
Average 67.63 35.85 5.90 23.03

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 13

0

25

50

75

100

Low BW Medium BW High BW

A
ve

ra
ge

 V
id

eo
 S

co
re

BoB Gemini Heuristic HRCC

0

25

50

75

100

Low BW Medium BW High BW

A
ve

ra
ge

 N
et

w
or

k
S

co
re

BoB Gemini Heuristic HRCC

0

25

50

75

100

Low BW Medium BW High BW

A
ve

ra
ge

 T
ot

al
 S

co
re

BoB Gemini Heuristic HRCC

Fig. 9: Average video, network and total scores for different scenarios (Interned-based).

E. Internet-Based Results

We further validate the performance of BoB against its
competitors in terms of network, video and total scores
through the OpenNetLab public Internet-based testbed. Fig. 9
shows the average scores for different scenarios. First,
BoB achieves the highest scores (video, network and total)
compared to Heuristic, Gemini and HRCC in all scenarios.
This demonstrates and validates the capabilities of BoB in
adapting to unseen network conditions. Second, HRCC suffers
from a low delay score, while Heuristic suffers from a low loss
score in a low bandwidth network. On the contrary, HRCC
suffers from a low loss score, while Heuristic suffers from
a low delay score in a medium bandwidth network. Such an
outcome confirms their low network scores in low and medium
bandwidth scenarios. Third, Gemini is the runner-up to BoB,
however, it does not perform well in the high bandwidth
scenario. Overall, the results here are quite similar to the
ones obtained in the controlled emulation-based experiments.
Specifically, BoB provides the following improvements over
Gemini, HRCC and Heuristic, respectively:
• Scenario A: Network score by (29.89%, 105.26%, 73.33%),

video score by (18.80%, 15.06%, 28.65%) and total score
by (26.75%, 69.93%, 58.71%).

• Scenario B: Network score by (26.15%, 64%, 105%), video
score by (30.71%, 37.87%, 3.75%) and total score by
(27.50%, 55.11%, 58.27%).

• Scenario C: Network score by (24.28%, 33.85%, 12.99%),
video score by (46.46%, 42.09%, 0.21%) and total score by
(30.60%, 36.37%, 8.59%).

V. DISCUSSION AND OPEN DIRECTIONS

To inspire further work in this area, we discuss three
interesting future research directions in RTC systems.
1) We believe that QoE metrics and bandwidth prediction

accuracy should be jointly optimized for better performance
in RTC systems. BoB aims to achieve this objective but
leaves room for improvement under more complex network
conditions and RTC-based application requirements.

2) Various bandwidth prediction models may perform differ-
ently based on which metrics they tend to prioritize or
sacrifice, which makes comparisons between these models
and drawing conclusions difficult, especially if their scores
are similar. One way to compare them is to find the best and
worst performing model in each QoE metric and quantify
the relative performance of the other models against these
boundaries or targets so that a system implementer may
choose a scheme based on his/her own priorities and

preferences. Note that the QoE is a compound metric and
if the aggregated values are similar, then the individual
components (latency, bandwidth variations, etc.) can be
examined to compare different prediction models.

3) Fairness is an important aspect when deploying a solution
on the Internet where usually competition exists between
different streams for the available bandwidth in a shared
network environment (either on the server or the client
side). This competition can be between intra (e.g., between
different RTC streams) or inter traffic (e.g., between RTC
and non-RTC streams like HTTP-based streaming traffic).
We believe that analyzing fairness and building a fairness-
aware solution is critical for optimizing the QoE. Also,
the designed solution should consider the impact and
diversity in transport-layer congestion control protocols
(BBR, NewReno, Cubic, NADA, SCReAM, etc.). Note that
the definition of fairness deserves some examination, too.
For example, is it fair to treat a small phone (small screen
and likely one viewer) and a large big-screen TV (large
screen and likely more than one viewer) the same [10]?

VI. CONCLUSIONS

We developed a receiver-side hybrid bandwidth predictor
for RTC services in this study, named BoB. Hybrid prediction
is achieved using a heuristic and a learning-based controller.
The heuristic uses a delay filter, while the learning-based
mechanism uses DRL actor-critic networks with PPO and
an Adam optimizer for model training and policy updates.
To perform the bandwidth prediction task, BoB uses the
heuristic-based controller at the beginning of each session
and then switches to the learning-based controller for more
accurate bandwidth prediction. As a result, BoB can achieve
a higher receiving rate with reduced packet delay and loss
ratio, contributing to a better user experience. During each
fixed time window, BoB collects packet-level data, including
the receiving rate, packet delay, packet loss and the last eight
predicted bandwidth values as the input state into the neural
network to predict the bandwidth for the next time epoch.

BoB has been integrated into AlphaRTC and the results
show the superiority of BoB for bandwidth prediction in RTC.
BoB achieves up to 15.62% and 27.87% better bandwidth
prediction accuracy than Gemini and HRCC (the winning
and runner-up solutions, respectively, in the ACM MMSys’21
grand challenge), respectively, under various challenging
network conditions. For future work, we plan to implement
FEC techniques using DRL and perform larger scale real-
world experiments.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

IEEE TRANSACTIONS ON MULTIMEDIA 14

Acknowledgements
This work was supported in part by Singapore Ministry

of Education Academic Research Fund Tier 2 under MOE’s
official grant number T2EP20221-0023 and by the Scientific
and Technological Research Council of Turkey under grant
number 120C154.

REFERENCES

[1] A Google Congestion Control Algorithm for Real-Time Com-
munication. [Online] Available: https://datatracker.ietf.org/doc/html/
draft-ietf-rmcat-gcc-02. Accessed on Jan. 21, 2022.

[2] Big Buck Bunny Video. [Online] Available: https://download.blender.
org/peach/bigbuckbunny movies/BigBuckBunny 320x180.mp4. Ac-
cessed on Jan. 21, 2022.

[3] Grand Challenge on Bandwidth Estimation for Real-Time Communica-
tions. [Online] Available: https://2021.acmmmsys.org/rtc challenge.php.
Accessed on Jan. 21, 2022.

[4] iproute2. [Online] Available: https://wiki.linuxfoundation.org/
networking/iproute2. Accessed on Jan. 21, 2022.

[5] OpenNetLab AlphaRTC. [Online] Available: https://github.com/
OpenNetLab/AlphaRTC. Accessed on Jan. 21, 2022.

[6] RTC Evaluation Score. [Online] Available: https://github.com/
OpenNetLab/challenge-HOWTO. Accessed on Jan. 21, 2022.

[7] S. Abbasloo, C.-Y. Yen, and H. J. Chao. Classic meets modern: A
pragmatic learning-based congestion control for the internet. In ACM
SIGCOMM, 2020.

[8] V. Arun and H. Balakrishnan. Copa: Practical delay-based congestion
control for the internet. In USENIX NSDI, 2018.

[9] T. Balan, A. Stanciu, F. Sandu, and S. Surariu. Webrtc based elearning
platform. eLearning & Software for Education, 2017.

[10] A. C. Begen. Spending quality time with the web video. IEEE Internet
Comput., 20(6):42–48, Nov./Dec. 2016 (DOI: 10.1109/MIC.2016.49).

[11] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann.
BoB Code. [Online] Available: https://github.com/NUStreaming/BoB.
Accessed on Aug. 21, 2022.

[12] A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Want to play
DASH? a game theoretic approach for adaptive streaming over HTTP.
In ACM MMSys, 2018 (DOI: 10.1145/3204949.3204961).

[13] A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Data-
driven bandwidth prediction models and automated model selection
for low latency. IEEE Trans. Multimedia, 23:2588–2601, 2021 (DOI:
10.1109/TMM.2020.3013387).

[14] A. Bentaleb, A. C. Begen, and R. Zimmermann. SDNDASH: Improving
QoE of HTTP adaptive streaming using software defined networking. In
ACM Multimedia, 2016 (DOI: 10.1145/2964284.2964332).

[15] A. Bentaleb, M. N. Akcay, M. Lim, A. C. Begen, and R. Zimmermann.
Catching the moment with lol+ in twitch-like low-latency live streaming
platforms. IEEE Trans. Multimedia, 24:2300–2314, 2022.

[16] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann.
A survey on bitrate adaptation schemes for streaming media over HTTP.
IEEE Communications Surveys & Tutorials, 21(1):562–585, Firstquarter
2019 (DOI: 10.1109/COMST.2018.2862938).

[17] N. Bouten, S. Latré, J. Famaey, W. Van Leekwijck, and F. De Turck.
In-network quality optimization for adaptive video streaming services.
IEEE Trans. Multimedia, 16(8):2281–2293, 2014.

[18] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP vegas: New
techniques for congestion detection and avoidance. In ACM SIGCOMM,
SIGCOMM ’94, page 24–35, New York, NY, USA, 1994.

[19] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
Bbr: congestion-based congestion control. Communications of the ACM,
60(2):58–66, 2017.

[20] N. Cardwell, Y. Cheng, S. H. Yeganeh, I. Swett, V. Vasiliev, P. Jha,
Y. Seung, M. Mathis, and V. Jacobson. BBR v2 a Model-
based Congestion Control. [Online] Available: https://datatracker.ietf.
org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00, 2019.
Accessed on Jan. 21, 2022.

[21] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Analysis
and design of the google congestion control for web real-time
communication (webrtc). In ACM MMSys, 2016.

[22] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo. Congestion control
for web real-time communication. IEEE/ACM Trans. Networking,
25(5):2629–2642, 2017.

[23] Cisco. VNI Complete Forecast Highlights. [Online] Avail-
able: https://www.cisco.com/c/dam/m/en us/solutions/service-provider/
vni-forecast-highlights/pdf/Global 2021 Forecast Highlights.pdf, Oct.
2020. Accessed on Jan. 21, 2022.

[24] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. {PCC}:
Re-architecting congestion control for consistent high performance. In
USENIX NSDI, 2015.

[25] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey, and
M. Schapira. PCC vivace: Online-learning congestion control. In
USENIX NSDI, 2018.

[26] Y. Dong, L. Song, R. Xie, and W. Zhang. An elastic system architecture
for edge based low latency interactive video applications. IEEE Trans.
Broadcasting, 2021.

[27] J. Fang, M. Ellis, B. Li, S. Liu, Y. Hosseinkashi, M. Revow,
A. Sadovnikov, Z. Liu, P. Cheng, S. Ashok, et al. Reinforcement
learning for bandwidth estimation and congestion control in real-time
communications. arXiv preprint arXiv:1912.02222, 2019.

[28] FCC. Raw Data - Measuring Broadband America. [Online] Available:
https://goo.gl/gJLND4, 2016. Accessed on Jan. 21, 2022.

[29] S. Floyd, T. Henderson, and A. Gurtov. The newreno modification to
TCP’s fast recovery algorithm. [Online] Available: https://datatracker.
ietf.org/doc/html/rfc3782, 2004. Accessed on Jan. 21, 2022.

[30] S. Fouladi, J. Emmons, E. Orbay, C. Wu, R. S. Wahby, and K. Winstein.
Salsify: Low-latency network video through tighter integration between
a video codec and a transport protocol. In USENIX NSDI, pages 267–
282, 2018.

[31] S. Ha, I. Rhee, and L. Xu. CUBIC: a new TCP-friendly high-speed TCP
variant. ACM SIGOPS operating systems review, 42(5):64–74, 2008.

[32] R. Herrero. Integrating hec with circuit breakers and multipath rtp to
improve rtc media quality. Telecommunication Systems, 64(1):211–221,
2017.

[33] R. Hong, Q. Shen, L. Zhang, and J. Wang. Continuous bitrate & latency
control with deep reinforcement learning for live video streaming. In
ACM Multimedia, 2019.

[34] T. Huang, R. Zhang, and L. Sun. Zwei: A self-play reinforcement
learning framework for video transmission services. IEEE Trans.
Multimedia, 2021.

[35] T. Huang, R.-X. Zhang, C. Zhou, and L. Sun. Qarc: Video quality aware
rate control for real-time video streaming based on deep reinforcement
learning. In ACM Multimedia, 2018.

[36] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and M. Watson. A
buffer-based approach to rate adaptation: Evidence from a large video
streaming service. In ACM SIGCOMM, 2014.

[37] V. Jacobson. Congestion avoidance and control. ACM SIGCOMM CCR,
18(4):314–329, 1988.

[38] B. Jansen, T. Goodwin, V. Gupta, F. Kuipers, and G. Zussman.
Performance evaluation of webrtc-based video conferencing. ACM
SIGMETRICS Performance Evaluation Review, 45(3):56–68, 2018.

[39] N. Jay, N. Rotman, B. Godfrey, M. Schapira, and A. Tamar. A deep
reinforcement learning perspective on internet congestion control. In
Int. Conf. Machine Learning. PMLR, 2019.

[40] J. Jiang, V. Sekar, and H. Zhang. Improving fairness, efficiency, and
stability in http-based adaptive video streaming with festive. In ACM
CoNEXT, 2012.

[41] I. Johansson and Z. Sarker. Self-clocked rate adaptation for multimedia.
[Online] Available: https://datatracker.ietf.org/doc/html/rfc8298, 2020.
Accessed on Jan. 21, 2022.

[42] W. Li, H. Zhang, S. Gao, C. Xue, X. Wang, and S. Lu. Smartcc: A
reinforcement learning approach for multipath tcp congestion control in
heterogeneous networks. IEEE Jour. Selected Areas in Communications,
37(11):2621–2633, 2019.

[43] Y. Li, X. Wang, H. Liu, L. Pu, S. Tang, G. Wang, and X. Liu.
Reinforcement learning based resource partitioning for improving
responsiveness in cloud gaming. IEEE Trans. Computers, 2021.

[44] H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource
management with deep reinforcement learning. In ACM Wksp. Hot
Topics in Networks, 2016.

[45] H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive video streaming
with pensieve. In ACM SIGCOMM, 2017.

[46] L. Mei, R. Hu, H. Cao, Y. Liu, Z. Han, F. Li, and J. Li. Realtime
Mobile Bandwidth Prediction Using LSTM Neural Network. In Int.
Conf. Passive and Active Network Measurement. Springer, 2019.

[47] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Advances in
neural information processing systems, 32:8026–8037, 2019.

[48] M. Polese, F. Chiariotti, E. Bonetto, F. Rigotto, A. Zanella, and M. Zorzi.
A survey on recent advances in transport layer protocols. IEEE
Communications Surveys & Tutorials, 21(4):3584–3608, 2019.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://datatracker.ietf.org/doc/html/draft-ietf-rmcat-gcc-02
https://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4
https://download.blender.org/peach/bigbuckbunny_movies/BigBuckBunny_320x180.mp4
https://2021.acmmmsys.org/rtc_challenge.php
https://wiki.linuxfoundation.org/networking/iproute2
https://wiki.linuxfoundation.org/networking/iproute2
https://github.com/OpenNetLab/AlphaRTC
https://github.com/OpenNetLab/AlphaRTC
https://github.com/OpenNetLab/challenge-HOWTO
https://github.com/OpenNetLab/challenge-HOWTO
https://github.com/NUStreaming/BoB
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://datatracker.ietf.org/meeting/104/materials/slides-104-iccrg-an-update-on-bbr-00
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://www.cisco.com/c/dam/m/en_us/solutions/service-provider/vni-forecast-highlights/pdf/Global_2021_Forecast_Highlights.pdf
https://goo.gl/gJLND4
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc3782
https://datatracker.ietf.org/doc/html/rfc8298

IEEE TRANSACTIONS ON MULTIMEDIA 15

[49] Review 42. Incredible Facebook Messenger Statistics in
2021. [Online] Available: https://review42.com/resources/
facebook-messenger-statistics, July 2021. Accessed on Jan. 21,
2022.

[50] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen. Commute Path
Bandwidth Traces from 3G Networks: Analysis and Applications. In
ACM MMSys, 2013.

[51] G. F. Riley and T. R. Henderson. The ns-3 network simulator. In
Modeling and tools for network simulation, pages 15–34. Springer, 2010.

[52] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Prox-
imal policy optimization algorithms. arXiv preprint arXiv:1707.06347,
2017.

[53] R. Shea, J. Liu, E. C.-H. Ngai, and Y. Cui. Cloud gaming: architecture
and performance. IEEE Network, 27(4):16–21, 2013.

[54] K. Spiteri, R. Urgaonkar, and R. K. Sitaraman. Bola: Near-optimal
bitrate adaptation for online videos. IEEE/ACM Trans. Networking,
28(4):1698–1711, 2020.

[55] Y. Tianrun, W. Hongyu, H. Runyu, Y. Shushu, L. Dingwei, and Z. Jiaqi.
Gemini: An ensemble framework for bandwidth estimation in web real-
time communications. In ACM MMSys, 2021.

[56] J. van der Hooft, S. Petrangeli, T. Wauters, R. Huysegems, P. R. Alface,
T. Bostoen, and F. De Turck. HTTP/2-Based Adaptive Streaming of
HEVC Video Over 4G/LTE Networks. IEEE Communications Letters,
20(11):2177–2180, Nov. 2016.

[57] B. Wang, Y. Zhang, S. Qian, Z. Pan, and Y. Xie. A hybrid receiver-side
congestion control scheme for web real-time communication. In ACM
MMSys, 2021.

[58] K. Winstein and H. Balakrishnan. TCP ex machina: Computer-generated
congestion control. ACM SIGCOMM CCR, 43(4):123–134, 2013.

[59] X. Xie and X. Zhang. POI360: Panoramic mobile video telephony over
LTE cellular networks. In ACM CoNEXT, 2017.

[60] Q. Xu, S. Mehrotra, Z. Mao, and J. Li. Proteus: network performance
forecast for real-time, interactive mobile applications. In ACM MobiSys,
2013.

[61] P. K. Yadav, A. Shafiei, and W. T. Ooi. Quetra: A queuing theory
approach to dash rate adaptation. In ACM Multimedia, 2017.

[62] F. Y. Yan, J. Ma, G. D. Hill, D. Raghavan, R. S. Wahby, P. Levis,
and K. Winstein. Pantheon: the training ground for internet congestion-
control research. In USENIX ATC, 2018.

[63] X. Yin, A. Jindal, V. Sekar, and B. Sinopoli. A control-theoretic
approach for dynamic adaptive video streaming over http. In ACM
SIGCOMM, 2015.

[64] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg. Adaptive
congestion control for unpredictable cellular networks. In ACM
SIGCOMM, 2015.

[65] P. Zaveri and S. Gould. Remote Work Boom. [Online] Available:
https://bit.ly/36dWM82, July 2021. Accessed on Jan. 21, 2022.

[66] H. Zhang, A. Zhou, J. Lu, R. Ma, Y. Hu, C. Li, X. Zhang, H. Ma,
and X. Chen. Onrl: improving mobile video telephony via online
reinforcement learning. In ACM MobiCom, 2020.

[67] S. Zhang, W. Lei, W. Zhang, Y. Zhan, and H. Li. An online learning
based path selection for multipath real-time video transmission in
overlay network. Trans. Emerging Telecommunications Technologies,
31(11):e4131, 2020.

[68] Y. Zhang, S. Kwong, and S. Wang. Machine learning based video coding
optimizations: A survey. Information Sciences, 506:395–423, 2020.

[69] A. Zhou, H. Zhang, G. Su, L. Wu, R. Ma, Z. Meng, X. Zhang, X. Xie,
H. Ma, and X. Chen. Learning to coordinate video codec with transport
protocol for mobile video telephony. In ACM MoBiCom, 2019.

[70] X. Zhu, P. Pan, M. Ramalho, and S. Mena. Network-assisted dynamic
adaptation (NADA): A unified congestion control scheme for real-time
media. [Online] Available: https://datatracker.ietf.org/doc/html/rfc8698,
2020. Accessed on Jan. 21, 2022.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://review42.com/resources/facebook-messenger-statistics
https://review42.com/resources/facebook-messenger-statistics
https://bit.ly/36dWM82
https://datatracker.ietf.org/doc/html/rfc8698

IEEE TRANSACTIONS ON MULTIMEDIA 16

Abdelhak Bentaleb received his Ph.D. in computer
science from National University of Singapore
(NUS), Singapore, in 2019. He continued as a
research fellow at the same department until 2022.
He is currently an assistant professor with the
Department of Computer Science and Software
Engineering, Concordia University, Canada. He is a
Co-Founder of Atlastream Inc., Singapore. He got
many prestigious awards like SIGMM Award for
Outstanding PhD Thesis Award, DASH-IF Best PhD
Dissertation Award and Dean’s Graduate Research

Excellence Award AY2018/2019. His research interests include applied AI
in multimedia systems and communication, video streaming architectures,
content delivery, distributed computing, computer networks and protocols,
wireless communications, and mobile networks. Further information can be
found at https://www.concordia.ca/ginacody/computer-science-software-eng/
faculty.html?fpid=abdelhak-bentaleb.

Mehmet N. Akcay received his Ph.D. in computer
science from Ozyegin University, at 2022. He
received his B.Sc., in the field of Computer
Engineering, from Istanbul Technical University in
2005. He completed his M.Sc. in the same field
in Bogazici University in 2008 and he has been
working in the industry for more than 10 years.
His research interests are HTTP adaptive streaming,
low-latency live streaming and software verification
using formal methods.

May Lim is currently doing her Ph.D. in computer
science at National University of Singapore (NUS),
Singapore. She received her B.E.Sc. and M.Sc.
from Nanyang Technological University (NTU),
Singapore, in 2015. Her current research interest
is primarily in multimedia streaming systems and
she has done several works relating to low-latency
streaming for live 2D and 6DoF videos.

Ali C. Begen (S’98–M’07–SM’12) has been a re-
search and development engineer since 2001, and
has broad experience in mathematical modeling,
performance analysis, optimization, standards devel-
opment, intellectual property and innovation. Be-
tween 2007 and 2015, he was with the Video and
Content Platforms Research and Advanced Develop-
ment Group at Cisco. Currently, he is affiliated with
Ozyegin University, where he teaches and advises
students in the computer science department. Ali has
a PhD in electrical and computer engineering from

Georgia Tech. To date, he received several academic and industry awards
(including an Emmy® Award for Technology and Engineering), and was
granted 30+ US patents. In 2016, he was elected distinguished lecturer by the
IEEE Communications Society, and in 2018, he was re-elected for another
two-year term. In 2017, he initiated and since then has been the head of
delegation for the Turkish National Body for ISO/IEC JTC1/SC29 (JPEG and
MPEG). He was also listed among the world’s most influential scientists in
the subfield of networking and telecommunications in 2020 and 2021. To
learn more about Ali’s projects, publications, talks, and teaching, standards
and professional activities, visit https://ali.begen.net.

Roger Zimmermann (S’93-M’99-SM’07) received
his M.S. and Ph.D. degrees from the University
of Southern California (USC), USA, respectively.
He is currently a professor with the Department of
Computer Science, National University of Singapore
(NUS), Singapore. He is also a lead investigator with
the Grab-NUS AI Lab and from 2011–2021 he was
Deputy Director with the Smart Systems Institute
(SSI) at NUS. He has coauthored a book, seven
patents, and more than 350 conference publications,
journal articles, and book chapters in the areas of

multimedia processing, networking and data analytics. He is a distinguished
member of the ACM and a senior member of the IEEE. He recently
was Secretary of ACM SIGSPATIAL (2014–2017), a director of the IEEE
Multimedia Communications Technical Committee (MMTC) Review Board
and an editorial board member of the Springer MTAP journal. He is also an
associate editor with IEEE MultiMedia, ACM TOMM and IEEE OJ-COMS.
More information can be found at http://www.comp.nus.edu.sg/∼rogerz.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TMM.2022.3216456

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://www.concordia.ca/ginacody/computer-science-software-eng/faculty.html?fpid=abdelhak-bentaleb
https://www.concordia.ca/ginacody/computer-science-software-eng/faculty.html?fpid=abdelhak-bentaleb
https://ali.begen.net
http://www.comp.nus.edu.sg/~rogerz

	Introduction
	Related Work
	Congestion Control Optimization
	Bitrate Selection Optimization
	Mixed Techniques

	BoB: Bang-on-Bandwidth
	Overview
	BoB Training Phase
	BoB Testing Phase

	System Architecture
	(Receiver-Side) BoB Controller
	Delay-Based (Heuristic) Rate Controller
	Learning-Based (DRL) Rate Controller
	Adaptive Selector

	(Sender-Side) Loss-Based Controller
	Parameter Choices and Training Setup
	BoB Implementation and Challenges
	Offline Training
	Online Testing
	Challenges

	Performance Evaluation
	Evaluation Setups
	Emulation-Based Setup
	Internet-Based Setup

	Comparisons
	Evaluation Metrics
	Bandwidth Prediction Error and Accuracy
	Network Score
	Video Score
	Total Score

	Results and Analysis
	Emulation-Based Results

	Internet-Based Results

	Discussion and Open Directions
	Conclusions
	References
	Biographies
	Abdelhak Bentaleb
	Mehmet N. Akcay
	May Lim
	Ali C. Begen
	Roger Zimmermann

