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Abstract: A key issue in the desired operation and development of power networks is the knowledge
of load growth and electricity demand in the coming years. Mid-term load forecasting (MTLF) has
an important rule in planning and optimal use of power systems. However, MTLF is a complicated
problem, and a lot of uncertain factors and variables disturb the load consumption pattern. This
paper presents a practical approach for MTLF. A new deep learning restricted Boltzmann machine
(RBM) is proposed for modelling and forecasting energy consumption. The contrastive divergence
algorithm is presented for tuning the parameters. All parameters of RBMs, the number of input
variables, the type of inputs, and also the layer and neuron numbers are optimized. A statistical
approach is suggested to determine the effective input variables. In addition to the climate variables,
such as temperature and humidity, the effects of other variables such as economic factors are also
investigated. Finally, using simulated and real-world data examples, it is shown that for one year
ahead, the mean absolute percentage error (MAPE) for the load peak is less than 5%. Moreover, for
the 24-h pattern forecasting, the mean of MAPE for all days is less than 5%.

Keywords: restricted Boltzmann machine; mid-term load forecasting; machine learning; artificial
intelligence; contrastive divergence algorithm

1. Introduction

The most effective usage of power plants depends on many elements, such as weather
variables like wind, humidity, and clouds, as well as other considerations such as holidays,
months of the year, and days of the week. Due to its remarkable relevance for system
operation and development, load forecasting has drawn considerable attention [1,2].

Proper load forecasting reduces investment costs and enables better planning for
the construction of distribution and transmission networks. Electric loads are a dynamic,
ever-changing characteristic. As a result, planning should be performed while considering
reliability coefficients and the maximum load. Until future development, the planned
network must also satisfy the demands of the area [3,4].

The load forecasting is classified into three levels: short-term, mid-term, and long-term.
The applications and the methods of the three levels are different. At the short-term level,
the forecasting horizon is just a few days, and it is used for short-term planning such as
optimal use of power networks. Mid-term load forecasting (MTLF) denotes a monthly or,
at most, annual forecast and is often used to manage peak consumption in certain seasons.
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The long-term level denotes the forecasting for some years ahead and is used for long-term
planning, such as managing new power plants [5,6].

The remainder of this paper is organized as follows. Many different approaches for
time series analysis and forecasting are reviewed in Section 2, and the main contributions
of this study are listed at the end of this section. The effective variables are analysed in
Section 3. In Section 4, the suggested RMB and the learning machine are described. The
24-h pattern forecasting and the forecasting of weekdays and weekends are studied in
Section 5. In Section 6, the suggested application is described. Comparisons between MAPE
and two different ANN-based methods are made in Section 7. Finally, the conclusions are
given in Section 8.

2. Literature Review

MTLF helps to improve congestion planning in transmission networks, thus enhancing
the system’s overall efficiency and optimizing energy costs for the consumer [7,8]. The
advantage of exact MTLF is that companies can use it to improve their transmission
network and distribution system. MTLF has been widely studied. In [9] investigated the
economic impact of MTLF in the last two decades in market regulation and improvement
of the transmission network and distribution system. Today, MTLF is also considered in
energy transactions and assists in purchasing or selling energy and developing generation,
transmission, and distribution contracts on a monthly or annual basis. It also affects the
contractors of generators and distributors. Incorrect forecasts may lead to insufficient
supply or oversupply. Therefore, it can be realized that exact MTLF leads to a more
economical system [10].

The impact of climate conditions on the mid-term horizon has been comprehensively
investigated in [11]. In [12], an MTLF scheme using the autonomous modelling technique
is suggested to predict the monthly load, where the effective variables are only loaded and
climatic variables. In this study, the authors compare the performance of the statistical
method with the results of artificial intelligence and conclude that the method based on
artificial intelligence yields better results. It has also been shown that statistical preprocess-
ing is required for data analysis. In [13,14], an artificial neural network (ANN) approach
is suggested that offers better results than statistical methods (regression models). In this
reference, the forecasting of monthly load demand for one year is examined. In [15], an
MTLF model based on a dynamic ANN is proposed. The model presented in this reference
is compared with the statistical approach, and it is concluded that the values forecast by the
proposed method are more accurate. The main advantage of the model proposed in this
paper is that meteorological forecasts are not used. Climate variables rarely have accurate
forecasts on a horizon of more than a week. In [16], an MTLF model based on the neural
network approach is presented without any climatic information. The transformer models
are suggested in [17,18] for load forecasting.

The deep learning methods, fuzzy systems and ANNs are widely used for modelling
and forecasting problems [19–21]. In a few studies, these methods have also been applied
to load forecasting. For example, a short-term forecasting scheme is designed in [22], and
the effect of weather conditions is studied. In [23], the optimized ANNs by particle swarm
optimization approach is suggested for MTLF, and by various examinations, the reduction
of the number of input variables is studied. In [24], an ANN approach is developed,
and the elimination of climate variables from the list of input factors is investigated. In
addition, the effect of population growth is investigated by the designed ANN model.
In [25], the days of the week are divided into three sections: early days of the week, middle
days of the week and the weekend, and a separate model is proposed for each section.
In [26], the days of the year are divided into 12 parts, and a neural network model is
presented for each part. In some sources, the problem data are divided into winter and
summer. In [27], genetic algorithm-optimized neural networks are used for medium-term
forecasting. In [28], radial neural networks are used for modelling and forecasting. In
the method proposed in this reference, neural network inputs include time (year, month,
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number of days of the month and days of the week), economic factors and temperature.
The economic factor and temperature forecast must be available to forecast load at a specific
time. Ghaderpour et al. [29,30] utilized the least-squares spectral and wavelet methods to
approximate the seasonal cycles in the geodetic, climate and streamflow time series that
can be used for forecasting. In [31], a comprehensive review is presented to inveigle the
various models for energy consumption.

In most of the MTLF methods above, (1) the specific region is investigated, and the
presented approach cannot be easily applied to other regions; (2) in some described MTLF
methods, the computations are too heavy and cannot be applied to real-world problems;
and (3) in the ANN-based methods, conventional learning schemes are used. Regarding
the discussion above, a new deep learning approach is suggested for MTLF. The main
contributions include:

• A comprehensive analysis is presented to evaluate the effect of various factors, such
as economics, climate and load pattern.

• A deep learning approach based on RBMs and CD algorithm is presented that can be
easily applied to a real-world problem with high dimensionality.

• In addition to the weights, the structure of RBMs is also optimized.
• In addition to the load peak, the suggested approach is extended to predict the 24-h

load pattern.

3. Determining the Effective Variables

In this section, the effect of each variable on load forecasting is examined. The ANN
inputs are altered in different scenarios, and the load peak forecasting error is compared to
determine which set of inputs yields the best prediction result. The results of modelling
and forecasting are depicted in different diagrams. After identifying the effective inputs,
the structure (number of neurons) is also optimized. A summary of the scenarios is given
as follows:

1. Load peak, gross domestic product (GDP), temperature peak and humidity percentage
peak on a similar day in the past five years; the inflation rate in the past five years;
type of day (working day or holiday).

2. Load peak, humidity percentage peak and temperature peak on a similar day in the
past five years; type of day.

3. Load peak and the average temperature on a similar day in the past five years; type
of day.

4. Load peak and temperature peak on a similar day in the past five years; type of day.
5. Load peak, temperature peak and minimum temperature on a similar day in the past

five years; type of day.
6. Peak temperature on a similar day in the past five years; GDP and inflation rate in the

past five years; type of day.
7. Average load peak, average peak temperature and peak temperature on a similar day

in the past five years; type of day.
8. Load peak and average load peak on a similar month in the past five years.
9. Load peak, average load peak and temperature peak on a similar day in the past five

years; average load peak and average temperature peak on a similar month in the
past five years; type of day.

10. Load peak on a similar day in the past five years; average load peak on a similar
month in the past five years; type of day.

11. Load peak on a similar day in the past five years; average temperature peak on a
similar month in the past five years; type of day.

12. Load peak and temperature peak on a similar day in the past five years; average load
peak and average temperature peak on a similar month in the past five years; type
of day.
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13. Load peak and temperature peak on a similar day in the past five years; average load
peak, average temperature and average humidity peak on a similar month in the past
five years; type of day.

14. Load peak on a similar day in the past five years divided by the average load peak of
the same year; temperature peak on a similar day divided by the average temperature
peak in the same month in the past five years; type of day.

15. GDP, number of subscribers (NOS), inflation rate and temperature peak in the past
five years; type of day.

16. Load peak in the past five years; type of day.

The deep learning algorithm is executed for all scenarios, and the results are given in
Tables 1 and 2. The desired results are acquired for a state where only climatic variables
and historical load data are used. The MAPE diagram for test and training data sorted by
the best average are illustrated in Figures 1 and 2, respectively. For the entire validation
data (one year and 7 months), the minimum MAPE is about 10%.

Table 1. Results of MAPE for different scenarios—validation data—deep learning algorithm.

Scenario Number Minimum Maximum Average

1 15.4781 23.5555 19.1534
2 16.3671 16.3719 16.3690
3 18.6534 18.6537 18.6536
4 13.1698 13.1699 13.1698
5 17.2136 17.2147 17.2144
6 29.6295 46.0934 39.7988
7 11.6415 11.6415 11.6415
8 13.9718 13.9721 13.9720
9 11.7558 24.0080 15.6033
10 15.9929 15.9930 15.9929
11 12.9877 12.9884 12.9881
12 13.0816 15.0096 14.2075
13 13.0105 15.2048 14.4485
14 11.9303 11.9369 11.9326
15 12.1229 12.9415 12.6579
16 18.2222 18.2222 18.2222

Table 2. Results of MAPE for different scenarios—training data—deep learning algorithm.

Scenario Number Minimum Maximum Average

1 11.8630 12.2117 11.9361
2 14.1981 14.2084 14.2022
3 14.3137 14.3140 14.3139
4 11.5422 11.5423 11.5423
5 14.0769 14.0787 14.0782
6 13.6844 13.6859 13.6852
7 8.3699 8.3699 8.3699
8 7.6704 7.6705 7.6704
9 7.3656 8.7696 7.9046
10 7.4343 7.4345 7.4344
11 12.0199 12.0203 12.0201
12 7.4794 8.3951 7.9008
13 7.4701 8.2060 7.7275
14 9.3015 9.3051 9.3038
15 11.4182 11.9852 11.7858
16 14.5071 14.5071 14.5071
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Figure 1. MAPE diagram for validation data, sorted by the best average.

Figure 2. MAPE diagram for training data, sorted by the best average.

4. Suggested RBM and Learning Machine

The proposed structure is displayed in Figure 3. The proposed algorithm for training
is the contrastive divergence (CD) algorithm. The input variables are explained in the next
section. The output of RBM represents the predicted load peak for the specified date. The
suggested approach is also extended for 24-h pattern forecasting. The details of computing
RBM and the learning method are given as follows:

Figure 3. Proposed RBM structure.
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(1) The degree of probability for apparent and hidden nodes is considered as follows.

p(vk, hk, ξ, ε, δ) =
eE(vk ,hk ,ξ,ε,δ)

n
∑

k=1
E(vk, hk, ξ, ε, δ)

, (1)

where ξ, ε, δ are trainable parameters, n is the number of training data segments, vk and hk
are the input vectors in visible and hidden layers, respectively, and E is the cost function.

(2) The energy function is defined as follows [32]:

E(vk, hk, ξ, ε, δ) = −hT
k ξvk − εThk − δTvk. (2)

(3) Initialization:

iter = 0, ∆ξ = 0
−(nv×nh)

, ∆ε = 0
−(nh×1)

, ∆δ = 0
−(nv×1)

. (3)

(4) For input data, v0, values of [h0, v1, h1] are obtained as follows:

h0 = σ
(
ξTv0 + ε

)
v1 = σ(ξh0 + δ)
h1 = σ

(
ξTv1 + ε

) (4)

σ(x) = 1/(1 + exp(−x)). (5)

(5) Parameter changes are obtained using the following equations.

∆ξ = γ∆ξ +
η

n

(
hT

0 v0 − hT
1 v1

)
(6)

∆ε = γ∆ε +
η

n
(h0 − h1)

T1
−(n×1)

(7)

∆δ = γ∆δ +
η

n
(v0 − v1)

T1
−(n×1)

(8)

where γ and η are constant learning rates.
(6) Update the parameters using the following equations.

ξ(t + 1) = ξ(t) + ∆ξ − ςξ(t) (9)

ε(t + 1) = ε(t) + ∆ε (10)

δ(t + 1) = δ(t) + ∆δ (11)

5. Examining the Hourly, Weekdays and Weekends Forecasts

A local neural network is considered for each hour to enhance learning. The suggested
structure is shown in Figure 4. The designed scheme leads to a better learning rate, while
the effect of climatic information on some hours that are less temperature-dependent is
decreased.

The proposed algorithm is generalized to hourly forecasting based on deep learning,
similar to the previous section. Similar to Figure 3, a local RBM network is considered for
each hour in the deep learning model. Load pattern forecasting for some weeks of April
and June and their daily error percentage charts are shown in Figures 5 and 6, respectively.
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Figure 4. Proposed structure for 24-h pattern forecasting. For each hour one RBM is considered. The
24 nodes in the output layer represent the predicted 24-h load pattern, For each RBM associated with
each hour, the input variables can be different.

Figure 5. Load pattern forecast chart for a week in April 2019.

Figure 6. Load pattern forecast chart for a week in June 2019.

Similar to weekdays, the proposed algorithm based on deep learning is generalized
to the holidays. In the suggested approach, the type of day is not considered as an input
variable, but its effect is indirectly considered. In other words, the historical load data as
the input variables are considered in similar days of past years. For evaluation, the data
from March 2019 to March 2020 are used as the validation data and from March 2010 to
March 2018 are used as the training data. Hourly forecast diagram for normal days in the
first week of April 2019 and associated MAPE results are given in Figure 7. The hourly



Sustainability 2022, 14, 10081 8 of 12

forecasts for normal days in spring 2019 and the related MAPE results are given in Figure 8.
The hourly forecast diagram for holidays over a year, from March 2019 to March 2020, is
shown in Figure 9. The load peak forecast chart for normal days during a year from March
2019 to March 2020 and the related MAPEs are illustrated in Figure 10. As the statistical
analysis shows, for most days, the error rate is less than 5%.

Figure 7. Hourly forecast for normal days in the first week of April 2019.

Figure 8. Hourly forecast for normal days in spring 2019.

Figure 9. Hourly forecast for holidays during one year from 21 March 2019 to 20 March 2020.
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Figure 10. Peak load forecast for normal days from 21 March 2019 to 20 March 2020.

6. Suggested Application

By various examinations, the most effective variables are considered to be the weather
conditions, type of day and historical load data. A practical application is designed as
shown in Figure 11. In this application, the type of inputs, the length of input data, the
neurons and the layer number are optimized such that the most accurate performance is
achieved. The main aspects of the designed scheme are summarized as:

Figure 11. Designed application for mid-term load forecasting.

• Just the weather data, historical load data and calendar (a calendar which shows the
type of days in the sense of working day or holiday) are considered as input data.

• To consider the effect of other factors, such as economic factors and population,
the case study region is classified into sub-regions. In addition, by considering the
pattern of load consumption, the effects of some unavailable and uncertain factors are
indirectly considered.

• A simple algorithm is considered to find and correct the bad data. The data of each
day are compared with the mean of similar days (similar days are defined as the days
that are similar in the sense of working days or holidays, and they are not as far as
one month). If the data of one day are far from the average, they are detected as a
candidate for bad data. If the weather conditions of this candidate are closer to the
mean of similar days, then they are considered bad data.

• In addition to load peak forecasting, the 24-h pattern is also forecast for one year ahead.
• To achieve the most accurate results, in addition to the parameters, the number of

neurons, the number of layers, and the type of input variables are also optimized.
It should be noted that, in the mid-term forecasting, various economic, social, and
cultural factors are effective. Most of these factors are unavailable or uncertain. To
consider the effect of these factors in an indirect scheme, the load data in the past dates
are considered as input variables, and the length of historical data is optimized.
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• For a long period of prediction, to improve the accuracy, it is suggested that for each
month, a different structure is optimized. The learning data is divided into some short
periods, and for each period a different structure is optimized. For example, suppose
that the period of prediction is from January to July one year ahead. The learning data
are divided into seven parts, and for each month a different RBM is optimized.

7. Comparisons

In this section, some comparisons are given to better show the suggested approach’s
superiority. In [13,16], the ANNs are applied to MTLF. The load peak forecast accuracy is
examined for normal days during a year from March 2019 to March 2020. The values of
MAPE are given in Table 3. The value of MAPE for the suggested method is remarkably
better than conventional ANN-based approaches. In the proposed approach, the set of
input variables, the number of layers in RBMs and the number of neurons are optimized to
achieve the best accuracy. In addition, the parameters of hidden layers are well tuned by
the suggested deep learning approach.

Table 3. Comparison of MAPE for different ANN-based methods.

Method Minimum Maximum Average

Method of [13] 13.474 15.014 14.244
Method of [16] 11.014 12.841 11.927

Suggested method 3.488 3.524 3.506

8. Conclusions

In this paper, an experimental approach based on deep learning techniques was
designed for load forecasting. The proposed approach was applied to forecast the electrical
load for the year ahead. In addition to optimizing the free parameters of RBMs, the number
of neurons and layers and the input set’s optimality were investigated by a statistical
analysis approach. To determine the most effective input set of RBM, the impact of different
variables, such as temperature, historical load data, type of days, date and economic factors
were analysed under various conditions. In addition, the 24-h pattern was also predicted
to forecast the load peak. The suggested approach can predict both working days and
holidays. Through various simulations, the forecasting accuracy of the designed approach
was examined by real-world load data, and the accuracy for one year ahead was estimated
to be more than 95%. The designed software applies various optimizations to the set
of input variables and the structure of RBMs to obtain the most accurate performance.
However, the main limitation is that there is no analysis of the datasets, and wrong data are
not detected. For future studies, besides the pre-analysis of datasets to remove the wrong
data, the designed application can also be developed for long-term forecasting.
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Abbreviations
The following abbreviations are used in this manuscript:

MTLF Mid-term load forecasting
RBM Restricted Boltzmann machine
MAPE Mean absolute percentage error
ANN Artificial neural network
CD Contrastive divergence
NOS Number of subscribers
GDP Gross domestic product
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