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Abstract 
 
This paper studies a two-echelon vendor managed inventory routing problem of a honey packager company that 
delivers packaged products from a single facility to multiple retailers and customers. The objective is creating a supply 
chain which minimizes the total distribution cost while satisfying customers’ demand on time through retailers. The 
complex nature of the problem originates from connecting the inventory management and the routing process which 
makes getting an exact solution to the problem difficult. We propose a mathematical optimization model and develop 
a three-step clustering-based math-heuristic algorithm to solve the problem since commercial solvers fail to provide 
high-quality solutions within a given time limit. The performance of the algorithm is tested with randomly generated 
dimensions. The algorithm yields (on average) 16% improvement compared to objective value performances of the 
commercial solver. 
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1. Introduction 
The inventory routing problem (IRP) is a variant of the vehicle routing problem, where the priority is on the vehicle’s 
routing as well as the inventory management. The inventory routing problem is defined as follows: A vehicle fleet of 
fixed capacities serve customers of fixed demand by the period from the central depot. Customers must be assigned 
vehicles and vehicles are routed so that the total route cost is minimized. These homogeneous vehicles deliver a single 
product to multiple customers depending on their consumption rate/orders. The route costs depend on the distance 
between customers or between customers and the depot (Malandraki and Daskin 1992). Determining and managing 
the optimum inventory amount are equally important as the routing process, where the inventory holding costs are 
significant and meeting customers’ demands perfectly are of paramount importance (Moin et al. 2011). In addition to 
these objectives, Ekici et al. (2015) shows that, the vehicle routes, delivery amounts and the starting and ending points 
of the vehicles can be tracked while not exceeding the inventory capacity for both warehouse(s) and vehicle(s) and 
avoiding product shortage over the designated periods. 
 
Due to the complex nature of the Inventory Routing Problem, several solution methods have also been introduced. 
The problem mentioned in Federgruen and Zipkin (1984) is a single day inventory routing problem with a limited 
amount of inventory. The solution proposed includes modified vehicle routing problem heuristics formulated as 
nonlinear integer programming which aims to minimize inventory holding, shortage and transportation costs while 
determining routes of each vehicle. Ghiani and Improta (2000) transforms the vehicle routing problem into a 
capacitated arc routing problem (CARP) and proposes an exact algorithm to solve the routing problem in and out of 
the clusters, treating the inside of the clusters as a generalized traveling salesman problem determining the least-cost 
throughout the circuit. Erdogan and Miller-Hooks (2012) states that the green vehicle routing problem (G-VRP) is 
formulated as a mixed integer linear program. The problem includes the modified Clarke and Wright’s savings 
heuristic and the density-based clustering algorithm (DBCA). DBCA separates the vehicle routing problem into 
routing and clustering. Crainic et al. (2011) studied a two-echelon vehicle routing problem (2E-VRP), and they solved 
their problem with a clustering algorithm. Their aim was to minimize the total transportation cost. In this article, first-
level vehicle routing is made between depot and satellites, and second-level vehicle routing is made between satellites 
and customers. Perboli et al. (2011) studies two-echelon vehicle routing problem which is an extension of a classic 
vehicle routing problem. Their transportation network has two levels. In the first level it is the connection from the 
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depot to intermediate depots. In the continuation, the second level represents the connection between intermediate 
depots and the customers with infinite time horizons. 
 
Crainic et. al. (2008) proposes clustering-based heuristics for the two-echelon vehicle routing problem. They work in 
two stages. The first phase attempts to provide a decent workable solution using a clustering algorithm assigns 
customers to its closest satellite in Euclidean distance, while the second phase aims to develop it. Dondo and Cerda 
(2007) studied multi-depot heterogeneous flat vehicle routing problems with time windows. This is accomplished by 
identifying a small number of feasible clusters, each enclosing several customer locations then calculating average 
travel distances and times between any two of them. Riberio and Lourenço (2003) proposes a model for an inventory 
system that corresponds to the vendor managed inventory system. The objective of the model is to minimize total 
inventory cost for the distributor while stock-out is allowed. The inventory routing problem emerges in the context of 
vendor managed inventory, in which a supplier decides on product completion for its customers. Walter et al. (1983) 
addresses integrated inventory management and vehicle scheduling in several variants of inventory routing problem 
model planning horizon that is finite. There are multiple solution approaches for inventory routing problem and genetic 
algorithm (GA) is one of them. Abdelmaguid and Dessouky (2006) stated that a depot has an adequate supply of 
inventory that can satisfy all demand throughout the finite time horizon inventory routing problem with multiple fleet 
sizes. Maximum Level (ML) policy is used as an inventory policy. To solve their problem, they used a genetic 
algorithm. Moin et al. (2011) studied an inventory routing problem that has a single assembly plant and multiple 
unique suppliers that supply distinct products. The study has been made based on a many-to-one structure. The demand 
is deterministic for the product, and time-varying. A hybrid genetic algorithm that considers both inventory and 
transportation costs has been proposed to solve the problem. Rohmer et al. (2019) claimed a two-echelon inventory 
routing problem (2E-IRP) which is formulated as a mixed-integer linear programming (MILP). It is considered as a 
single depot problem with a finite time horizon which is represented as t. Since the products have an expiration date, 
they are sorted in the inventory accordingly. Park et al. (2016) proposed an inventory routing problem with the vendor 
managed inventory system that produced products distributed from a single manufacturer to multiple retailers. To 
determine replenishment times and quantities and vehicle routes, they proposed a genetic algorithm to solve the 
problem. A mixed integer linear programming model is constructed for the VMIRPL. The objective of the model is 
to maximize supply chain profits for the distributor while lost sales are allowed. 
 
The aim of this paper is to design a two-echelon inventory routing system solution that is computationally scalable for 
the case study while satisfying all demand within an acceptable optimality gap. However, rather than a supply chain 
where the products are directly delivered to customers from the production center, a two-echelon logistics network is 
proposed where several intermediate retailers are utilized. The problem is inspired by a real-life honey packager 
company that aims to utilize their inventories and vehicles better and work with better routes to satisfy all demand of 
a specific product with a high seasonality effect. The considered problem revolves around a finite horizon with a single 
production facility and multiple retailers where a fleet of vehicles with finite capacities transport products from the 
single production facility to multiple customers through the usage of retailers, based on their forecasted yearly demand. 
Combined with the difficult-to-predict nature of the demand for the products, direct shipping is required to be 
implemented to satisfy several customers’ demands based on their location and demand which also provides a model 
that is better suited for real-life cases. The problem definition, parameters and assumptions are taken from the real-
life problem to ensure the model is easily implementable. The vendors incur costs such as warehouse and vehicle 
usage costs, inventory cost, distribution, and direct shipping costs. The introduced mathematical model output consists 
of a yearly transportation plan for the fleet of vehicles including which routes to take in each period, how much product 
to carry over these routes, the inventory levels of each warehouse and when to use direct shipping for which customer. 
Since the problem combines retailer inventory management with routing decisions, the commercial solvers fail to 
provide first-rate solutions within acceptable time horizons. Therefore, a three-step clustering based math-heuristic 
approach to reach high-quality solutions with a minimum loss from optimality is proposed. 
 
2. Methods 
We propose a mathematical formulation solution and a math-heuristic algorithm that includes a clustering method for 
solving the two-echelon vendor managed inventory routing problem (2E-VMIRP). First, we construct a mathematical 
model for solving the problem and later show that it is not possible to solve the two-echelon vendor managed inventory 
routing problem in an accepted time horizon due to the computational challenge of said problem. The complex nature 
of the problem originates from connecting the inventory management and the routing process which makes getting an 
exact solution to the problem difficult. Then we propose the math-heuristic algorithm consisting of three steps which 
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are: clustering, second echelon routing and first echelon routing. The idea behind this approach is to divide the problem 
into three small parts and solve them separately with mathematical formulations that are connected via their inputs 
and outputs. In clustering we assign retailer(s) to customers to satisfy the demand and cluster the retailer and its 
customers. In the second step of the algorithm, we focus on the second echelon of the network and take the clusters 
from the previous step as input. In the final step of our algorithm, we focus on the first echelon routing taking the 
routing information from the previous step as an input. 
 
2.1 Mathematical optimization model 
The two-echelon vendor managed inventory routing problem in this study consists of a single production center 
supplying a single type of product to multiple retailers which then satisfies customer demands working in two echelons. 
The vendors plan inventory replenishment, ordering products from the production center according to the demand 
based on the forecasted amounts. In the first echelon, we consider that a product is shipped from the production center 
(i=0) to a set of possible retailers (i=1..., Re) over a discrete time horizon T via first level vehicles (v=1..., NV) with 
routing. In the second echelon, the products delivered to the retailers are distributed to the customers (j=1..., Cu) via 
second level vehicles (l=1..., NL). A sample two-echelon logistics network and its routing decisions are shown in 
Figure 1. 
 

 
 

Figure 1: A sample two-echelon logistics network 
 

Vehicles on the first level exit from the production facility and are routed to retailers, then route back to the production 
facility for further use. Customers can only be served by a designated retailer. It must be signified that backorder is 
not allowed by any means. Within the same period, separate vehicles exiting from retailers to carry demand over to 
the customers on the second level and route back to the retailer where they started. It is also possible for a vehicle to 
route between several customers before returning to the retailer, the same is also valid for vehicles exiting the 
production center and routing between retailers before routing back. To ensure demand is met, direct shipping methods 
are also implemented to the model to neutralize cases where truck capacity is exceeded or where retailers cannot 
satisfy customer demand from their own inventory. The direct shipping option acts as a new type of transportation 
where the demand of the customer is satisfied from the production center directly with a noticeably higher cost. The 
mathematical optimization model is formulated as follows and see Table 1 for declarations. 
 

Table 1: Summary of notation for the original mathematical model 
 Variables 
𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡  1 if vehicle v is utilized from the production facility to customer j at time t;0 o.w. 

 𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  1 if vehicle v is utilized from retailer k to retailer i in t; 0 o.w. 
 𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡  1 if vehicle v is utilized from retailer k to the production facility at time t; 0 o.w. 
 𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡  1 if vehicle l is utilized from the production facility to customer j at time t; 0 o.w. 
 𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  1 if vehicle l is utilized from retailer i to customer j at time t; 0 o.w. 
 𝑅𝑅6𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡  1 if vehicle l is utilized from customer m to customer j at time t; 0 o.w. 
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 𝑅𝑅4𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡  1 if vehicle l is utilized from customer j to retailer i at time t; 0 o.w. 
 𝐴𝐴𝑖𝑖 1 if retailer i has inventory flow for any given period; 0 o.w. 
 𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡  product flow on arc the production facility to retailer i by vehicle v at time t. 
 𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  product flow on arc retailer i to retailer k by vehicle v at time t. 
 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡  product flow on arc retailer i to county j by vehicle l at time t. 
 𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚

𝑡𝑡  product flow on arc customer m to customer j by vehicle l at time t. 
 𝑄𝑄0𝑗𝑗𝑗𝑗𝑡𝑡  product flow on arc the production facility to customer j by vehicle l at time t. 
 𝐷𝐷𝑆𝑆𝑗𝑗𝑡𝑡 number of products delivered to customer j by using direct shipping at time t. 
𝐼𝐼𝑖𝑖𝑡𝑡 inventory level of retailer i at time t. 

  Parameters 
𝑑𝑑𝑗𝑗𝑡𝑡 demand of customer j at time t. 
𝑐𝑐0𝑖𝑖 cost of arc from the production center to retailer i. 
𝑐𝑐𝑖𝑖𝑖𝑖 cost of arc from retailer i to retailer k. 
𝑐𝑐𝑖𝑖𝑖𝑖  cost of arc from retailer i to customer j. 
𝑐𝑐𝑚𝑚𝑚𝑚  cost of arc from customer m to customer j. 
𝑐𝑐0𝑚𝑚 cost of arc from the production center to customer m. 
𝐹𝐹𝐹𝐹 retailer usage cost. 
𝐻𝐻 inventory holding cost for each product. 
𝐶𝐶𝐶𝐶 cost of carry for each product via routing. 
𝐷𝐷𝐷𝐷 cost of direct shipping per item. 
𝑆𝑆 inventory capacity for each retailer. 
𝐶𝐶𝑣𝑣 capacity of vehicles, as number of units for the first level. 
𝐶𝐶𝑙𝑙 capacity of vehicles, as number of units for the second level. 
𝐶𝐶𝐶𝐶 retailers’ periodic distribution capacity 
𝐴𝐴𝐴𝐴 number of different routes that retailers can do in a period. 
𝐷𝐷0𝑖𝑖 distance between production center to retailer i. 
𝐷𝐷𝑖𝑖𝑖𝑖  distance between retailer i to retailer k. 
𝐷𝐷𝑖𝑖𝑖𝑖  distance between retailer i to customer j. 
𝐷𝐷𝑚𝑚𝑚𝑚  distance between customer m to customer j. 
𝑀𝑀𝑀𝑀1 the maximum distance a first level vehicle can travel. 
𝑀𝑀𝑀𝑀2 the maximum distance a second level vehicle can travel. 

  
Mathematical Model: 
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𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 = 𝐴𝐴𝐴𝐴    ∀𝑡𝑡 (20) 

�
𝑗𝑗

𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = �
𝑗𝑗

𝑅𝑅4𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡     ∀𝑡𝑡, 𝑖𝑖, 𝑙𝑙 (21) 

�
𝑗𝑗

𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 = �
𝑗𝑗

𝑅𝑅7𝑗𝑗0𝑙𝑙𝑡𝑡     ∀𝑡𝑡, 𝑙𝑙 (22) 

�
𝑡𝑡

�
𝑣𝑣

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 + �
𝑡𝑡

�
𝑘𝑘

�
𝑣𝑣

𝑅𝑅3𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡 ≤ 𝑀𝑀𝐴𝐴𝑖𝑖     ∀𝑖𝑖 (23) 

�
𝑖𝑖

�
𝑗𝑗

𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + �
𝑗𝑗

𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 ≤ 1    ∀𝑙𝑙, 𝑡𝑡 (24) 

𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀10𝑖𝑖𝑖𝑖𝑡𝑡       ∀𝑖𝑖, 𝑣𝑣, 𝑡𝑡 (25) 
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡       ∀𝑖𝑖, 𝑘𝑘, 𝑣𝑣, 𝑡𝑡 (26) 

�
𝑙𝑙

𝑅𝑅6𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 = 0      ∀𝑚𝑚 = 𝑗𝑗, 𝑡𝑡 (27) 

�
𝑖𝑖

�
𝑙𝑙

𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + �
𝑚𝑚

�
𝑙𝑙

𝑅𝑅6𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 + �
𝑙𝑙

𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 ≤ 1    ∀𝑡𝑡, 𝑗𝑗 (28) 

�
𝑣𝑣

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 0      ∀𝑖𝑖 = 𝑘𝑘, 𝑡𝑡 (29) 

�
𝑖𝑖

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 𝐷𝐷0𝑖𝑖 + �
𝑖𝑖

�
𝑘𝑘

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝐷𝐷𝑖𝑖𝑖𝑖 + �
𝑖𝑖

𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡 𝐷𝐷0𝑖𝑖 ≤ 𝑀𝑀𝐷𝐷1    ∀𝑡𝑡, 𝑣𝑣 (30) 

�
𝑗𝑗

𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 𝐷𝐷0𝑗𝑗 + �
𝑗𝑗

𝑅𝑅7𝑗𝑗0𝑙𝑙𝑡𝑡 𝐷𝐷0𝑗𝑗 + �
𝑖𝑖

�
𝑗𝑗

𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝐷𝐷𝑖𝑖𝑖𝑖 + �
𝑚𝑚

�
𝑗𝑗

𝑅𝑅6𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 𝐷𝐷𝑚𝑚𝑚𝑚 + �
𝑖𝑖

�
𝑗𝑗

𝑅𝑅4𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡 𝐷𝐷𝑖𝑖𝑖𝑖 ≤ 𝑀𝑀𝐷𝐷2    ∀𝑡𝑡, 𝑙𝑙 (31) 
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𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚
𝑡𝑡 ,𝑄𝑄0𝑗𝑗𝑗𝑗𝑡𝑡 , 𝐼𝐼𝑖𝑖𝑡𝑡 ,𝐷𝐷𝑆𝑆𝑗𝑗𝑡𝑡 ≥ 0 and integer (32) 

𝑅𝑅00𝑗𝑗𝑗𝑗𝑡𝑡 ,𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑅𝑅2𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑅𝑅4𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡 ,𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡 ,𝑅𝑅6𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡 ,𝑅𝑅7𝑗𝑗𝑗𝑗𝑗𝑗𝑡𝑡 ,𝐴𝐴𝑖𝑖 ∈ 0,1 (33) 
 
The objective function (1) is the minimization of all the related costs which are cost of carry per product, cost of using 
the specific arc, cost of direct shipping, holding cost of inventory and retailer usage fixed cost. Constraint (2) sets the 
initial inventory to zero. Constraint (4) sets the inventory capacity for all the retailers. Constraint (5) ensures that no 
inventory is left at the end of the last period. Constraint (8) sets the vehicle capacity for the first level while ensuring 
that a delivery can be smaller or equal to the capacity of the vehicle. Constraints (6) and (7) set the vehicle capacity 
for the second period while ensuring that a delivery can be smaller or equal to the capacity of the vehicle. Constraint 
(9) ensures that a vehicle that comes out from the production center can visit one retailer at maximum in a particular 
period. Constraint (14) enables a retailer to be visited only by another retailer or the production center. Constraint (3) 
sets the inventory flow balance for all the retailers for the first level. Constraint (16) sets the second level product 
flow, and ensures that all demand is satisfied via available channels. Constraints (13) and (15) ensure that the number 
of entering and exiting vehicles and their indices are equal for the first and second level. Constraints (10), (11) and 
(12) force the flow to be present only if that second level arc is used by that second level vehicle. Constraints (25) and 
(26) force the flow to be present only if that first level arc is used by that first level vehicle. Constraint (17) makes 
sure that the number of products distributed by a retailer cannot exceed the retailer distribution capacity. Constraint 
(18) makes sure that the number of products distributed to customers by the production center cannot exceed its 
distribution capacity. Constraints (19) and (20) limit the possible routes a retailer or the production center can do at 
any period to the different available routes for every period. Constraint (29) computes that a retailer cannot tour back 
to itself. Constraint (27) computes that a customer cannot tour back to itself. Constraints (21) and (22) ensure that the 
vehicles return to their designated starting point whether it is the production center or a retailer. Constraint (24) ensures 
that only a single retailer can utilize a second level vehicle for any period t. Constraint (28) ensures that visiting is 
made at most once to satisfy demand of a customer via routes. Constraint (23) limits the retailer to be utilized only if 
it receives product from the production center or any other retailer. Constraints (30) and (31) ensure that the distances 
traveled by the first and second level vehicles does not exceed the maximum allowed distance for each of them. 
Constraints (32) and (33) enforce binary, integer and non-negativity conditions upon the variables. 
 
2.2 Math-Heuristic approach  
The complex nature of the problem combined with its dimensions forms a computationally challenging problem to be 
solved in commercial solvers. Therefore, a heuristic approach is mandatory for the problem to be solved efficiently. 
We propose a math-heuristic algorithm consisting of three steps; clustering, second echelon routing and first echelon 
routing. In the proposed solution we use different mathematical formulations for each of the steps. The first 
mathematical model aims to create clusters consisting of a single retailer and multiple customers. The customers 
within the cluster are served by their corresponding retailer. After the clustering is complete, the second mathematical 
model is solved for each cluster on the second echelon, using the output of the first model. Following after is the third 
model, which is solving the routing for the first echelon, yielding the routing between the production center and each 
retailer that is included in a cluster in the previous model. Over the improvement period of the algorithm construction 
process, we continually generated randomized data sets to observe the wellness of the algorithm compared to the result 
of the mathematical model. 
 
2.2.1 Step 1 – Clustering 
In this step we aim to effectively cluster the retailers and the customers together. The key point is to select the best 
possible retailer-customer combinations with a method that does not steer the result too far from the optimal solution. 
A utility based mathematical model is introduced as the mentioned method. The objective of the model is to pick the 
retailer-customer pairings with the best demand over distance value, which is called the utility. Also, we incur an 
addition to the total utility value to consider the effect of the products distributed through used retailers on the objective 
function. Production center will also be used for distributing products to customers directly, meaning that customers 
close to the production center can be served via second level vehicles departed from the production center. The 
maximization of the utility needs an upper-bound to limit the model. Note that the last retailer node which is the 
dummy retailer corresponds to direct shipping. We introduced direct shipping as a retailer to compare the efficiency 
and fitness of direct shipping and comparing it to other possible retailers. Keep in mind that the dummy retailer has 
no capacity and does not involve any parameters while being available for usage every period. The dummy retailer is 
assumed to be at an equal distance to every customer even though this assumption is not possible in real life. See Table 
2 for all declarations in clustering mathematical model. 
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Table 2: Summary of notation for the clustering mathematical model 

Variables  
𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡  1 if customer i is assigned to retailer j at time t; 0 o.w. 
𝑦𝑦𝑗𝑗𝑡𝑡 1 if retailer j is utilized at time t; 0 o.w. 
Parameters  
𝑈𝑈𝑖𝑖𝑖𝑖𝑡𝑡  utility of customer i - retailer j pairing (demand/distance) at time t. 
𝑀𝑀𝑀𝑀 possible number of retailers can be used. 
𝑀𝑀𝑀𝑀 tolerated distance for each retailer-customer pair. 
𝐷𝐷𝐷𝐷 minimum demand required to be assigned to retailers for usage. 
Abbreviations  
𝑝𝑝𝑝𝑝 production center. 
𝑑𝑑𝑑𝑑 dummy retailer (direct shipment). 

 
Clustering Mathematical Model: 

 

max
𝐳𝐳

    
1
𝛼𝛼
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𝑖𝑖
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𝑗𝑗∉𝑑𝑑𝑑𝑑
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𝑡𝑡

𝑈𝑈𝑖𝑖𝑖𝑖𝑡𝑡 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 +
1
𝛽𝛽
�
𝑖𝑖

�
𝑗𝑗∉𝑑𝑑𝑑𝑑

�
𝑡𝑡

𝑑𝑑𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡  (1) 

s. t.  
�
𝑗𝑗

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 = 1    ∀𝑖𝑖, 𝑡𝑡 (2) 

�
𝑗𝑗∉{𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑}

𝑦𝑦𝑗𝑗𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀    ∀𝑡𝑡 (3) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑦𝑦𝑗𝑗𝑡𝑡       ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (4) 

�
𝑖𝑖

𝑑𝑑𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝐶𝐶𝐶𝐶      ∀𝑗𝑗, 𝑡𝑡 (5) 

𝐷𝐷𝑖𝑖𝑡𝑡   𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀      ∀𝑖𝑖, 𝑗𝑗, 𝑡𝑡 (6) 

�
𝑖𝑖

�
𝑡𝑡

𝑑𝑑𝑖𝑖𝑡𝑡𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 ≥ �
𝑡𝑡

𝐷𝐷𝐷𝐷  𝑦𝑦𝑗𝑗𝑡𝑡    ∀𝑗𝑗 ∉ {𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑} (7) 

𝑦𝑦𝑗𝑗𝑡𝑡 = 1    ∀𝑡𝑡, 𝑗𝑗 = {𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑} (8) 
𝑦𝑦𝑗𝑗𝑡𝑡 = 𝑦𝑦𝑗𝑗𝑡𝑡+1    ∀𝑡𝑡, 𝑗𝑗 ∉ {𝑝𝑝𝑝𝑝,𝑑𝑑𝑑𝑑} (9) 
𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡 , 𝑦𝑦𝑗𝑗𝑡𝑡 ∈ {0,1} (10) 

 
The objective function (1) maximizes the utility by also considering the amount of demand distributed via routing, the 
nature of the objective function is further explained in §2.1.1.1. Constraint (2) allows a customer to only receive 
products from one retailer. Constraint (3) limits the total number of retailers utilized to not exceed the maximum 
number of retailers. Constraint (4) allows a retailer can only be assigned to customers if it is utilized. Constraint (5) 
ensures that product flow from a retailer cannot exceed the retailer's total distribution capacity. Constraint (6) limits 
the distance traveled from a customer to a retailer to not exceed the maximum tolerated distance. Constraint (7) makes 
sure that if a retailer is utilized, it meets the minimum demand output requirement. Constraint (8) enables direct 
shipping/dummy retailers and production centers to be used and they are not included in the calculation of maximum 
retailer capacity. Constraint (9) makes sure that if a retailer is utilized at period t, it can be utilized for all other periods 
without incurring further costs. Constraint (10) sets the binary condition for the variables. 

  
2.2.1.1 Determining 𝛼𝛼 and 𝛽𝛽 values 
As seen in the objective function of the clustering mathematical model which maximizes utility, also to consider the 
amount of products delivered via routing it is added to the objective function. However, while comparing the average 
demand and utility parameters’ values there is a significant difference between their magnitudes, and this difference 
affects the objective function critically. To reduce this effect, it is required to normalize both sides of the objective 
function with designated coefficients. To determine these coefficients, the objective function is separated into two 
parts and the model is run separately for each part. While the first execution maximizes only the utility function, the 
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second execution aims to only maximize the amount of products delivered via routing. Then the optimal objective 
values from both models are designated as 𝛼𝛼  and 𝛽𝛽  coefficients and implemented to the original Clustering 
Mathematical Model. The utility and demand functions are divided by 𝛼𝛼  and 𝛽𝛽  values respectively. With this 
implementation featuring the optimal values 𝛼𝛼 and 𝛽𝛽 of the two objective functions, the combined objective function 
can take values in the range of [0,2] and the resulting clustering mathematical model is normalized. 
 
2.2.2 Step 2 – Second Echelon Routing 
The clustering mathematical model is giving clusters of retailer-customer assignments as an output which we will use 
as an input in this step. Recall that, the production center will behave like a retailer in this model to ensure customers 
assigned to the production center are served. The introduced mathematical model is a vehicle routing problem model 
that minimizes costs and determines the second level routes between the retailer and its assigned customers and 
between customers. Therefore, all decision variables and parameters related to the first level are removed. The second 
echelon routing includes the possibility of direct shipping that the model can prefer depending on the condition. Recall 
that direct shipping is sending the product/s via a different and direct transport with an increased cost to the customer 
in need without stopping somewhere else. Every cluster taken from the clustering step contains only one retailer and 
each customer must be served by at most one retailer, which creates the necessity of running the model for each cluster 
separately. 
 
 Second Echelon Routing Mathematical Model: 
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𝑹𝑹𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕 𝒄𝒄𝒎𝒎𝒎𝒎 (11) 

𝐬𝐬. 𝐭𝐭.  
�
𝒍𝒍

𝑹𝑹𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕 = 𝟎𝟎    ∀𝒕𝒕,𝒎𝒎 = 𝒋𝒋 (12) 

𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 ≤ 𝑴𝑴𝑴𝑴𝟐𝟐𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕     ∀𝒊𝒊, 𝒋𝒋, 𝒍𝒍, 𝒕𝒕 (13) 
𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎

𝒕𝒕 ≤ 𝑴𝑴𝑴𝑴𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕     ∀𝒎𝒎, 𝒋𝒋, 𝒕𝒕, 𝒍𝒍 (14) 
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𝑹𝑹𝟒𝟒𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕     ∀𝒍𝒍, 𝒕𝒕, 𝒋𝒋 ≠ 𝒎𝒎 (15) 
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𝑹𝑹𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕 ≤ 𝟏𝟏    ∀𝒕𝒕, 𝒋𝒋 (16) 
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𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 = 𝑪𝑪𝒍𝒍    ∀𝒍𝒍, 𝒕𝒕 (17) 
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𝒕𝒕 − 𝒅𝒅𝒋𝒋𝒕𝒕 + 𝑫𝑫𝑺𝑺𝒋𝒋𝒕𝒕 = �

𝒎𝒎

�
𝒍𝒍

𝑾𝑾𝒋𝒋𝒋𝒋𝒋𝒋
𝒕𝒕     ∀𝒋𝒋, 𝒕𝒕 (18) 

�
𝒋𝒋

𝑹𝑹𝟐𝟐𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 ≤ 𝟏𝟏    ∀𝒕𝒕, 𝒊𝒊, 𝒍𝒍 (19) 

�
𝒊𝒊

�
𝒋𝒋

𝑹𝑹𝟐𝟐𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 𝑫𝑫𝒊𝒊𝒊𝒊 + �
𝒎𝒎

�
𝒋𝒋

𝑹𝑹𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕 𝑫𝑫𝒎𝒎𝒎𝒎 + �
𝒊𝒊

�
𝒋𝒋

𝑹𝑹𝟒𝟒𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕 𝑫𝑫𝒊𝒊𝒊𝒊 ≤ 𝑴𝑴𝑫𝑫𝟐𝟐    ∀𝒕𝒕, 𝒍𝒍 (20) 

�
𝒋𝒋

𝒅𝒅𝒋𝒋𝒕𝒕 −�
𝒋𝒋

𝑫𝑫𝑺𝑺𝒋𝒋𝒕𝒕 = 𝑵𝑵𝒊𝒊
𝒕𝒕    ∀𝒕𝒕, 𝒊𝒊 (21) 

𝒀𝒀𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 ,𝑾𝑾𝒎𝒎𝒎𝒎𝒎𝒎
𝒕𝒕 ,𝑫𝑫𝑺𝑺𝒋𝒋𝒕𝒕,𝑵𝑵𝒊𝒊

𝒕𝒕 ≥ 𝟎𝟎 𝐚𝐚𝐚𝐚𝐚𝐚 𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢 (22) 
𝑹𝑹𝟐𝟐𝒊𝒊𝒊𝒊𝒊𝒊𝒕𝒕 ,𝑹𝑹𝟒𝟒𝒋𝒋𝒋𝒋𝒋𝒋𝒕𝒕 ,𝑹𝑹𝟔𝟔𝒎𝒎𝒎𝒎𝒎𝒎𝒕𝒕 ∈ {𝟎𝟎,𝟏𝟏} (23) 

 
The objective function (11) is the minimization of all the related costs which are cost of carry per product, cost of 
using the specific arc and cost of direct shipping. Constraint (12) limits the customer to tour back to itself. Constraints 
(13) and (14) allow the flow to be present only if that arc is used by a second level vehicle. Constraint (15) ensures 
that the number of entering and exiting vehicles and their indices are equal. Constraint (16) allows the routing to be 
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present only in the purpose of satisfying a demand. Constraint (17) is the vehicle capacity constraint for the second 
level. Constraint (18) is the second level flow constraint, and ensures that all demand is satisfied via available channels. 
Constraint (19) limits the route to only start from a retailer, arriving to a customer. Constraint (20) ensures that the 
distance traveled by a second level vehicle does not exceed the maximum allowed distance. Constraint (21) enables 
the dummy demand of the retailers to be equal to the demand of the customers that has been satisfied by that retailer. 
The Constraints (22) and (23) are binary, integer and non-negativity conditions for the variables.  

  
�
𝑗𝑗

𝑑𝑑𝑗𝑗𝑡𝑡 −�
𝑗𝑗

𝐷𝐷𝑆𝑆𝑗𝑗𝑡𝑡 = 𝑁𝑁𝑖𝑖𝑡𝑡    ∀𝑡𝑡, 𝑖𝑖            (21) 

The dummy demand 𝑁𝑁𝑖𝑖𝑡𝑡 is constructed in order to track the amount of products required to the retailer which is equal 
to the products distributed to the assigned customers from that retailer. This dummy demand is initialized in both 
echelons but with different agendas. In the second echelon the dummy demand is initialized as a decision variable in 
order to prevent limitation and allow the formulation to find the optimal amount. However, in the first echelon the 
dummy demand is initialized as a parameter and takes it’s value from the second echelon routing as an input. 
 
2.2.3 Step 3 – First Echelon Routing 
In this step we use some of the outputs from the previous mathematical model, the Customer Bubble Model. The 
retailers that are used in the previous model are all assigned with customer/s, as it is known that they must be opened 
for the optimal result to be achieved in our next model. It is assumed that those retailers are available and the other 
ones are not available, calculating the cost of using a retailer accordingly. The introduced mathematical model is an 
IRP model that minimizes costs and determines the routes between the production center and retailers and between 
retailers. In the second echelon routing there are several clusters that must be solved and the same model must be run 
for each of them; however, in this model all the retailers and the production center are in the same cluster, so running 
the model once for the entire cluster will cover all the possible routes.  
 

First Echelon Routing Mathematical Model: 
 

min
𝐳𝐳

    �
𝑡𝑡

�
𝑖𝑖

�
𝑣𝑣

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 𝑐𝑐0𝑖𝑖 + �
𝑡𝑡

�
𝑖𝑖,𝑘𝑘  𝑖𝑖≠𝑘𝑘

�
𝑣𝑣

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝑐𝑐𝑖𝑖𝑖𝑖  

+�
𝑡𝑡

�
𝑖𝑖

�
𝑣𝑣

𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡 𝑐𝑐0𝑖𝑖 + �
𝑡𝑡

�
𝑖𝑖

𝐼𝐼𝑖𝑖𝑡𝑡𝐻𝐻 (24) 

s. t. (25) 
𝐼𝐼𝑖𝑖0 = 0    ∀𝑖𝑖 (26) 
𝐼𝐼𝑖𝑖𝑇𝑇 = 0    ∀𝑖𝑖 (27) 
𝐼𝐼𝑖𝑖𝑡𝑡 ≤ 𝑆𝑆𝑖𝑖     ∀𝑖𝑖, 𝑡𝑡 (28) 

�
𝑣𝑣

𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐼𝐼𝑖𝑖𝑡𝑡−1 + �
𝑣𝑣

�
𝑘𝑘

𝑍𝑍𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡 = 𝑁𝑁𝑖𝑖𝑡𝑡 + �
𝑣𝑣

�
𝑘𝑘

𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝐼𝐼𝑖𝑖𝑡𝑡    ∀𝑖𝑖, 𝑡𝑡 
(29) 

�
𝑖𝑖

𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝐶𝐶𝑣𝑣    ∀𝑣𝑣, 𝑡𝑡 (30) 

�
𝑖𝑖

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 1    ∀𝑣𝑣, 𝑡𝑡 (31) 

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 + �
𝑘𝑘

𝑅𝑅3𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡 = �
𝑘𝑘

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡     ∀𝑖𝑖, 𝑣𝑣, 𝑡𝑡 (32) 

�
𝑣𝑣

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 + �
𝑘𝑘

�
𝑣𝑣

𝑅𝑅3𝑘𝑘𝑘𝑘𝑘𝑘𝑡𝑡 ≤ 1    ∀𝑖𝑖, 𝑡𝑡 (33) 

𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀10𝑖𝑖𝑖𝑖𝑡𝑡     ∀𝑖𝑖, 𝑣𝑣, 𝑡𝑡 (34) 
𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ≤ 𝑀𝑀𝑀𝑀3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡     ∀𝑖𝑖, 𝑘𝑘, 𝑣𝑣, 𝑡𝑡 (35) 

�
𝑣𝑣

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 = 0    ∀𝑖𝑖 = 𝑘𝑘, 𝑡𝑡 (36) 

�
𝑖𝑖

𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 𝐷𝐷0𝑖𝑖 + �
𝑖𝑖

�
𝑘𝑘

𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 𝐷𝐷𝑖𝑖𝑖𝑖 + �
𝑖𝑖

𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡 𝐷𝐷0𝑖𝑖 ≤ 𝑀𝑀𝐷𝐷1    ∀𝑡𝑡, 𝑣𝑣 (37) 

𝑋𝑋0𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑍𝑍𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 , 𝐼𝐼𝑖𝑖𝑡𝑡 ≥ 0 and integer (38) 
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𝑅𝑅10𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑅𝑅3𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 ,𝑅𝑅5𝑖𝑖0𝑣𝑣𝑡𝑡 ∈ {0,1} (39) 
 
The objective function (24) is the minimization of all the related costs which are the cost of using the specific arc and 
inventory holding cost. Constraint (25) sets the initial inventory of every retailer to zero. Constraint (26) makes sure 
that at the end of the last period there are no products in the inventory. Constraint (27) sets the inventory capacity of 
all the retailers. Constraint (28) is the inventory balance constraint for all the retailers, and ensures product needs to 
be distributed from each used retailer is satisfied by the production center. Constraints (29) and (30) set the vehicle 
capacity and make sure that the delivery amounts can be smaller than or equal to the first level vehicle capacity. 
Constraint (31) ensures that the number of entering and exiting vehicles and their indices are equal. Constraint (32) 
enables a retailer can be visited by another retailer or the production center. Constraints (33) and (34) allow the flow 
to be present only if that arc is used by a first level vehicle. Constraint (35) makes sure that a retailer cannot tour back 
to itself. Constraint (36) limits the distance traveled by a first level vehicle to be smaller than or equal to the maximum 
allowed distance. Constraints (37) and (38) are the binary, integer and non-negativity constraints for the variables. See 
Table 3 in order to understand complete working principle of the math-heuristic approach. 
 
 Table 3: Pseudocode of the proposed math-heuristic algorithm 

Clustering  

Inputs: Utility 𝑈𝑈𝑖𝑖𝑖𝑖𝑡𝑡 , demand 𝑑𝑑𝑖𝑖𝑡𝑡,  and the clustering model. 
Procedure: Step 0: Start with j available retailers (initially j=0), for every visit increase j by one. 
 Step 1: Execute the clustering model twice to maximize both side of the clustering model’s 

objective function separately, keep optimal values as α and β. 
 Step 2: Using α and β values, execute the initial clustering model to find best retailer-

customer pairs. 
 Step 3: Keep the quantity of demand carried with direct shipping determined in Step 2, 

together with the number of retailers available. 
 Step 4: If j = 0, go to Step 0, and proceed to Step 5 without visiting Step 4, else go to Step 5. 
 Step 5: Compare the difference in quantity of demand carried with direct shipping when 

available retailers equal j and j − 1. If the difference is bigger than the parameter DR, go to 
Step 0, else break the procedure and keep all customer-retailer pairing results when number of 
available retailers is equal to j − 1. 

Outputs: 𝑥𝑥𝑖𝑖𝑖𝑖𝑡𝑡  values if customer i assigned to retailer j at time t, and 𝑦𝑦𝑗𝑗𝑡𝑡 values if retailer j is used. 

Second Echelon  
Inputs: Customer-retailer assignment list, used retailers list from clustering, and the second echelon 

routing mathematical model. 
Procedure: Step 0: Start with kth index in used retailers list (initially k=0), and keep the value in index as 

i. 
 Step 1: For each retailer, period t is 1 initially, if 𝑡𝑡 > 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 , then increase k by one, and go to 

Step 0, else go to Step 2. 
 Step 2: Indicate which customer is assigned to retailer i at time t by using customer-retailer 

assignment list, and corresponding parameters. 
 Step 3: Execute the second echelon routing mathematical model with indicated customers and 

keep amount of product needs to be distributed via routing by retailer i at time t as initialized 
decision variable 𝑁𝑁𝑖𝑖𝑡𝑡. Increase t by one and go to Step 1. 

Outputs: Total cost as objective function value and routing output of the second echelon.  
Amount of product needs to distribute via routing for every used retailer i, and every t as 𝑁𝑁𝑖𝑖𝑡𝑡. 

First Echelon  
Inputs: 𝑁𝑁𝑖𝑖𝑡𝑡  as parameter; for every used retailer and every t, the first echelon routing mathematical 

model. 
Procedure: Execute the first echelon routing mathematical model to satisfy product needed to used retailers 

for distribution. 
Outputs: Total cost as objective function value and routing output of the first echelon. It will be 

initialized the utilization cost of a retailer for each used retailer. 
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3. Results and Discussion  
 

Table 4: Computational result comparisons on randomly generated instances 
c r t Model 

Result 
Gap 
(%) 

Algorithm 
Result 

CPU 
(sec) 

Improv. 
(%) 

30 4 2 211960 60.7 197182 52 7.9% 
30 4 2 170139 49.5 148720 12 14.8% 
40 5 2 198413 48.0 182240 72 8.1% 
40 5 2 223397 57.4 204596 726 10.8% 
50 7 3 366869 40.3 302869 1404 17.4% 
50 7 3 425680 37.6 410536 77 6.4% 
65 8 3 642517 49.3 507150 1135 29.8% 
65 8 3 517274 42.6 428679 281 30.3% 

 
The Table 4 provides the results of the mathematical model and the proposed algorithm, the optimality gap of the 
mathematical model after running time of four hours in CPLEX, the amount of time it takes for the algorithm to solve 
the problem instance as seconds and the improvement on results of the proposed algorithm compared to the 
mathematical model. Note that, the percentile for improvement being positive means that the algorithm performed 
better as the smaller result is preferred for the minimization objective for the problem. The n, r, and t stand for the 
number of customers, number of retailers and the time horizon for the specific instance, respectively. The locations of 
the production center, retailers, and the customers on three randomly generated test instances are shown in Figure 2. 
The amount of time that is required for the proposed algorithm to solve the problem instance is highly dependent on 
the number of customers that are connected to any retailer. Even though for two different instances sizes are the same, 
computational time to get a solution may differ due to size of clusters imported to the algorithm to be solved. The 
Improv. column is included to observe the performance between two different solutions introduced in this paper. 
Although the computational time of the proposed algorithm may be high in specific instances, it is still much better 
than the original mathematical model solved in CPLEX. The goal for the algorithm was to reduce the computational 
time with minimum loss from optimal results. As a result, we decreased the computational time severely and 
consistently achieved better results than the 4 hours of run time in CPLEX for the original mathematical model. The 
algorithm’s routing results for the test instances in Figure 2 are available in Appendix A. 

  

Figure 2: Randomly generated instances with 40, 50, 65 customers respectively 

4. Conclusion 
The two-echelon vendor managed inventory routing problem is discussed in this paper, and the clustering-based math-
heuristic algorithm consists of three parts is proposed. The first phase constructs clusters including a single retailer 
and multiple customers in each. The customers are paired with their corresponding retailers using a utility-based 
function. The second step solves the routing problem in each cluster independently and the third step solves the routing 
problem between each cluster’s retailer and the production center. The proposed algorithm achieves an on average 
16% improvement compared to mathematical model’s four hours performance in commercial solver CPLEX on all 
instances run, while decreasing computational time to minutes. The proposed math-heuristic algorithm is compared 
with the initial model in several instances to yield a proper estimate about the performance of the algorithm. 
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Appendix A: 

Appendix A: Algorithm results of the instances in Figure 2 
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