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Department of Natural and Mathematical Sciences, Özyeğin University, 34794 Istanbul, Turkey
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Abstract In the conventional approach, fermionic test
fields lead to a generic overspinning of black holes result-
ing in the formation of naked singularities. The absorption
of the fermionic test fields with arbitrarily low frequencies is
allowed for which the contribution to the angular momentum
parameter of the space-time diverges. Recently we have sug-
gested a more subtle treatment of the problem considering the
fact that only the fraction of the test fields that is absorbed by
the black hole contributes to the space-time parameters. Here,
we re-consider the interaction of massless spin (1/2) fields
with Kerr and Kerr–Newman black holes, adapting this new
approach. We show that the drastic divergence problem dis-
appears when one incorporates the absorption probabilities.
Still, there exists a range of parameters for the test fields that
can lead to overspinning. We employ backreaction effects
due to the self-energy of the test fields which fixes the over-
spinning problem for fields with relatively large amplitudes,
and renders it non-generic for smaller amplitudes. This non-
generic overspinning appears likely to be fixed by alternative
semi-classical and quantum effects.

1 Introduction

Penrose singularity theorem implies that a space-time fails to
satisfy geodesic completeness following the formation of a
trapped surface, during gravitational collapse [1]. Geodesic
incompleteness is identified with the existence of a singular-
ity. One way to maintain the smooth causal structure of the
space-time is to disable the causal contact of the singularity
with distant observers. This requires the singularities to be
covered by event horizons. The cosmic censorship conjec-
ture states that the gravitational collapse should end up as a
black hole rather than a naked singularity; thus forbids the
causal contact of singularities with distant observers [2].
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By definition, a black hole is an object surrounded by an
event horizon. Penrose singularity theorem does not imply
that the black holes are generic solutions of general relativity
unless the cosmic censorship conjecture is valid. However, a
rigorous proof of the cosmic censorship conjecture has been
elusive for decades. A closely related problem is the possi-
bility to perturb a black hole by test particles and fields to
destroy the event horizon. This problem was first studied by
Wald [3]. The main concern in both problems is whether or
not a space-time can include a naked singularity which can
be in causal contact with distant observers. In other words
we would like to test if the singularity is “censored”, and if
it remains “censored”.

In Wald type problems one attempts to increase the angu-
lar, momentum or charge parameter of a black hole beyond
the extremal limit. If this can be achieved the event hori-
zon can be destroyed to expose the singularity. Following
Wald various thought experiments were constructed to test
the validity of cosmic censorship. These thought experiments
involve perturbations of the black holes with both test par-
ticles [4–24], and fields [25–43]. There were also attempts
to incorporate quantum effects [44–50], and test the validity
of cosmic censorship for asymptotically anti-de Sitter cases
[51–58]. The state of the cosmic censorship conjecture has
been evaluated in a recent review [59].

In the conventional approach developed by Wald, one
starts with a black hole surrounded by an event horizon with
initial parameters of mass, angular momentum, charge. These
initial parameters satisfy a certain inequality which assures
that the event horizon exists. For example, a Kerr–Newman
black hole satisfies:

M2 − Q2 − (J 2/M2) ≥ 0 (1)

Next, one perturbs this black hole with test particles or fields
with energy δM , angular momentum δ J , and charge δQ.
In the test particle/field approximation we assume that the
background geometrical structure of the space-time does not
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change but the space-time parameters are modified.

M → (M + δM)

J → (J + δ J )

Q → (Q + δQ) (2)

If the modified parameters of the space-time fail to satisfy
the main inequality (1), we conclude that the event horizon is
destroyed and the final parameters of the space-time represent
a naked singularity.

Recently, Sorce and Wald constructed an alternative
method to test the possibility to destroy the event horizon
[60]. For that purpose, they define a function f (λ) such that
the event horizon is destroyed if f (λ) becomes negative.
They claim that the terms first order in λ can make f (λ) neg-
ative. However, the contribution of the terms that are second
order in λ make f (λ) positive again. In [61] we have disputed
their approach and explicitly demonstrated that their method
involves order of magnitude problems when one imposes
the non-controversial fact that δM is inherently a first order
quantity for test particles and fields. In particular the function
f (λ) defined by Sorce and Wald has the form

f (λ) ∼ O(ε2) − O(λε(δM)) + O(λ2(δM)2) (3)

where λ and ε are small parameters. Note that the lead-
ing term contributes to f (λ) to second order. Since δM
is inherently a first order quantity, the terms that are first
order in λ contribute to f (λ) to third order (not second), and
the terms that are second order in λ contribute to f (λ) to
fourth order (not second). Apparently, the third order terms
O(λε(δM)) cannot make f (λ) negative, and the fourth order
terms O(λ2(δM2)) cannot fix anything. (See [61] for an elu-
cidative discussion.) Despite the fact that the order of mag-
nitude errors are manifest, the Sorce–Wald method is widely
accepted in black hole physics.

In [61] we have also suggested a new approach to Wald
type problems by considering the fact that only the fraction of
a test field that is absorbed by the black hole contributes to the
parameters of the space-time. This fraction is determined by
the absorption probability which refers to the relative fluxes
of the transmitted and incident modes. For the superradi-
ant modes of the bosonic fields the absorption probability
becomes negative so that the field is reflected back with a
larger amplitude. In this sense, the relative flux of the trans-
mitted and incident modes is not an actual probability as we
have argued in [50]. Still, we adapted the conventional term
“absorption probability” for the relative fluxes in [61] which
will be retained in this paper. After all, the relative flux for
fermionic fields never becomes negative and can be regarded
as a probability.

In the new approach, one considers a test field with energy
δM at infinity. The absorption probability of the test field is
denoted by Γ . Since the test field is partially absorbed by the

black hole and partially reflected back to infinity, the energy
absorbed by the black hole is

Eabs = Γ (δM) (4)

since the rest of the energy Eref = (1 − Γ )(δM) is reflected
back to infinity. Therefore the test field modifies the mass
parameter by an amount

M → (M + Γ (δM)) (5)

In [61] we showed that the incorporation of the absorption
probability fundamentally changes the results of the calcula-
tions for the validity of the main inequality (1), for bosonic
fields. In the conventional method, the optimal perturba-
tions with frequency at the superradiance limit appear to
be the most challenging modes to destroy the event hori-
zon. However the absorption probability for these modes is
zero which means they are entirely reflected back to infin-
ity. These modes do not modify the original parameters of
the spacetime therefore they do not constitute a challenge
for the event horizon when one takes the absorption prob-
abilities into consideration. We have also shown that only
a small fraction of the challenging modes with frequencies
close to the superradiance limit, is absorbed. Incorporation
of the absorption probabilities gives us the ultimate solution
for the overspinning problem due to bosonic test fields.

However the case is fundamentally different for fermionic
fields. The energy momentum tensor for the fermionic fields
does not satisfy the weak energy condition and they do not
exhibit superradiant scattering. The absorption of fermionic
fields with arbitrarily low frequencies is allowed. In [62]
we have shown that this leads to drastic results concern-
ing the validity of cosmic censorship. The contribution of
test fields to the angular momentum parameter of the black
hole is inversely proportional to the frequency ω; namely
δ J = (m/ω)δM . In the absence of a lower limit for ω, δ J
increases without bound which leads to a generic overspin-
ning of black holes. Backreaction effects become irrelevant
far before ω approaches to zero. Since the overspinning is
generic, we postponed the solution of the problem to a quan-
tum theory of gravity beyond the semi-classical approxima-
tion, which does not appear to be imminent.

In this work we investigate whether a more subtle treat-
ment of the overspinning problem which we have proposed in
[61], can fix the overspinning problem for fermionic fields. In
Sect. 2, we evaluate the interaction of Kerr black holes with
massless spin (1/2) fields by taking the absorption proba-
bilities into consideration and compare the results with the
conventional method. We derive that there exists a range of
parameters for the test field which can lead to overspinning.
However overspinning is not generic anymore and it is prone
to be fixed by employing backreaction effects. In Sect. 3 we
show that the self-energy of the test fields due to the increase
in the angular velocity of the event horizon fixes the over-
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spinning problem for fields with a relatively large magnitude
and renders it non-generic for small amplitudes. In Sect. 4
we extend the results derived for Kerr black holes to Kerr–
Newman black holes.

2 Fermionic fields and Kerr black holes

The well-known effect of superradiance refers to the fact that
bosonic fields interacting with Kerr black holes get reflected
back to infinity with a larger amplitude if the frequency of
the field is lower than the critical value:

ωsl = mΩ = ma

r2+ + a2
(6)

where ωsl is the superradiance limit. In other words, if the
frequency of the field is below the superradiance limit no net
absorption of the test field occurs. In an alternative approach,
it has been shown a test particle or a field cannot be absorbed
by a Kerr black hole unless the contributions to mass and
angular momentum parameters satisfy

δM ≥ Ωδ J (7)

The first derivation of this condition known to this author is
by Needham [63]. For test fields with

δ J = m

ω
δM

Needham’s condition gives identically the same result for the
minimum value of the frequency of a test field to allow its
absorption by a Kerr black hole

ω ≥ mΩ (8)

The relative contribution of a test field to the angular momen-
tum parameter of the black hole is inversely proportional to
its frequency ω. If the absorption of test fields with arbitrarily
low frequencies were allowed, their contribution to the angu-
lar momentum parameter would be much larger compared to
their contribution to the mass parameter. In particular this
contribution would diverge to infinity as ω approaches zero.
For that reason, the existence of a lower limit to allow the
absorption of a test field is crucial to prevent the overspin-
ning of black holes into naked singularities. The overspinning
would become inevitable without the existence of the lower
limit (8).

The derivation of the superradiance effect and Need-
ham’s condition are based on the assumption that the energy
momentum tensor of the test field satisfies the weak energy
condition. However it is known that fermionic fields do not
satisfy the weak or the null energy condition. Superradiance
does not occur for fermionic fields and Needham’s condition
does not apply. There is no lower limit to allow the absorption
of fermionic field; i.e. the absorption probability approaches
zero, only as ω approaches zero [64]. This leads to a generic

overspinning of Kerr and Kerr–Newman black holes as we
have previously discussed in some of our previous works
[28,32], culminating in [62].

In this section we send in massless spin (1/2) test fields
to a Kerr black hole to test the possibility of destroying the
event horizon. First, we adapt the conventional approach and
show that overspinning is inevitable and generic. This can
be considered as the Q → 0 limit of our results for Kerr–
Newman black holes in [62]. After that we re-consider the
problem by incorporating the absorption probabilities, which
will fundamentally alter the course of the analysis. We start
with a Kerr black hole which satisfies

M2 − J = M2ε2 (9)

For ε � 1 the black hole is nearly extremal, whereas the
case ε = 0 corresponds to an extremal black hole. We send
in a massless spin (1/2) test field from infinity with energy
δM = Mζ and angular momentum δ J = (m/ω)δM , where
m = (1/2) is the azimuthal wave number of the test field and
ω is its frequency. In the conventional approach we assume
that the final parameters of the space-time is given by:

Mfin = (M + δM) = M(1 + ζ )

Jfin = (J + δ J ) = J + m

ω
δM = J + m

ω
Mζ (10)

We define the function

Δfin(M, J ) ≡ M2
fin − Jfin

= M2(ε2 + ζ 2 + 2ζ ) − m

ω
Mζ (11)

where we have imposed (9) for the initial parameters of the
black hole. If the function Δfin(M, J ) becomes negative at
the end of the interaction, we may conclude that the event
horizon is destroyed exposing the singularity. Δfin(M, J )

will be negative if the frequency of the incoming field satis-
fies

ω = ωcrit <
mζ

M(ε2 + ζ 2 + 2ζ )
(12)

Δfin becomes zero for the critical value of the frequency
given in (12). If the frequency of the incident field is lower
than ωcrit , Δfin will be negative indicating the formation of
a naked singularity. For frequencies slightly less than ωcrit ,
Δfin will be close to zero; i.e. Δfin ∼ −M2ζ 2. The overspin-
ning problem due to these modes can be fixed by backreac-
tion effects which contribute to second order to Δfin. In our
previous analysis for Kerr–MOG [40], and Kerr–Newman
black holes [62] we have verified that the overspinning of
Kerr black holes by scalar fields is fixed by the backreaction
effects. This relies on the fact that the superradiance limit pre-
vents the absorption of modes with frequencies much smaller
than ωcrit . For fermionic fields superradiance does not occur;
or equivalently Needham’s condition (7) does not apply .
There is no lower limit for ω to prevent the absorption of the
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Fig. 1 Δfin becomes negative around ω ∼ 0.25, then sharply diverges
as ω approaches zero. (Here we let M = 1, ε = ζ = 0.01)

test fields. The absorption of modes with arbitrarily low val-
ues of ω is allowed for which Δfin diverges to minus infinity.
To observe the behaviour of Δfin, we have plotted Δfin given
in Eq. (11) as a function of the frequency of the incoming
field for M = 1 and ε = ζ = 0.01, in Fig. 1. Δfin becomes
zero around ω = 0.24752, then it sharply diverges as ω

approaches zero. This divergence problem leads to drastic
results considering the validity of cosmic censorship.

For a numerical example, consider two modes with fre-
quencies ω1 = 0.245(1/M) and ω2 = 0.1(1/M). For
M = 1, ε = ζ = 0.01, Δfin will be equal to

ω1 = 0.245 → Δfin ∼ −0.0002 ∼ −M2ε2

ω2 = 0.1 → Δfin ∼ −0.03 (13)

The overspinning due to the former mode can be fixed
by backreaction effects; however the overspinning due to
the latter is generic. The absorption of the latter mode is
only allowed for fermionic fields which leads to a generic
destruction of the event horizon. Actually, the absorption of
modes with arbitrarily low frequencies is also allowed for
which Δfin diverges to minus infinity (see [62] for a general
discussion involving Kerr–Newman black holes).

However, the validity of the results above are restricted to
the case where one ignores the effect of absorption probabil-
ities, which refers to the ratio of the transmitted and incident
fluxes. This ratio is negative for the superradiant modes of
bosonic fields. Ignoring the effect of the absorption proba-
bilities refers to the fact that one assumes that the ratio of the
transmitted and incident fluxes is 1, whenever it is positive.
As we stated in the introduction we have suggested a more

subtle treatment of the scattering problem in [61]. Since the
test field is partially absorbed by the black hole and partially
reflected back to infinity, only the fraction of the test field
that is absorbed by the black hole contributes to the mass and
angular momentum parameters of the space-time. In this case
the final parameters of the space-time will attain the values:

Mfin = M + Γ (Mζ )

Jfin = J + m

ω
Γ (Mζ ) (14)

where Γ is the absorption probability of the test field. The
absorption probabilities for fermionic and bosonic test fields
were calculated in a seminal work by Page [64]. For s =
(1/2) and m = (1/2), the absorption probability of a test
field with frequency ω is given by:

Γ = 1

4

(
1 + Ω2

κ2

) (
Aκω

2π

)2

= M2ω2 (15)

where Ω is the angular velocity of the horizon, κ is the surface
gravity, A is the area of the horizon. (See equation (16) in
[64].) For Kerr black holes these parameters take the form

Ω = a

r2+ + a2

κ = r+ − r−
2(r2+ + a2)

A = 4π(r2+ + a2) (16)

where r+ is the radius of the event horizon, and a ≡ (J/M) is
the angular momentum parameter. The absorption probabil-
ity Γ is positive definite for fermionic fields which indicates
that superradiance does not occur. Another interesting fea-
ture is that the absorption probability does not depend on
the angular momentum of the black hole and the angular
velocity of the horizon. Now, we substitute the absorption
probabilities to (14) and calculate the final parameters of the
space-time.

Mfin = (M + ζM3ω2)

Jfin = (J + mζM3ω) (17)

The function Δ(M, J ) takes the form:

Δfin = M2
fin − Jfin

= M2 + M6ζ 2ω4 + 2M4ζω2 − J − mM3ζω

= M2ε2 + M6ζ 2ω4 + 2M4ζω2 − mM3ζω (18)

The results of the thought experiment involving the interac-
tion of black holes with fermionic fields is fundamentally
altered when one incorporates the absorption probabilities.
One observes that Δfin does not diverge to minus infinity as
ω approaches to zero, contrary to its analogue derived by
adapting the conventional approach in (11). The equation
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(18) implies that the function Δ(M, J ) re-attains its initial
value as ω approaches zero. The physical interpretation is
clear. As ω approaches zero, the absorption probability also
approaches zero. The test field is entirely reflected back to
infinity leaving the space-time parameters invariant after the
interaction.

Still, there exists a range of parameters for the frequency
of the test field which would lead to a negative value for
Δfin, indicating the formation of a naked singularity at the
end of the interaction. In the limiting case ε = 0 and ζ = 0,
this range is bounded below by ω = 0 and bounded above
by ω = m/(2M) = 0.25(1/M) which are the roots of (18)
with ε = ζ = 0. For different values of ε and ζ , the lower
bound is larger than zero, and the upper bound is smaller than
m/(2M). For example, for an extremal black hole (ε = 0),
perturbed by a test field with δE = 0.01M (ζ = 0.01) the
relevant range is 0 < ω < 0.24992(1/M).

Both for extremal and nearly extremal black holes (inde-
pendent of the value of ε) the function Δfin attains its mini-
mum value at

ωcrit �
( m

4M

)
(19)

which is valid to first order in ζ . Substituting the critical
value derived in (19) to (18) we can analytically calculate
the minimum value for Δfin.

Δfin−min = M2ε2 −
(
m2ζ

8

)
M2 (20)

The minimum value derived for Δfin will be negative for
relevant choices of ε and ζ . For example, for a nearly extremal
black hole with ε = 0.01 perturbed by a test field with ζ =
0.01 the minimum value of Δfin can be calculated as

Δfin−min = −0.00021M2 (21)

whereas for an extremal black hole perturbed by the same
test field, the minimum value is

Δfin−min = −0.00031M2 (22)

Since the absorption probability does not depend on the ini-
tial angular momentum parameter for fermionic fields, the
calculations are identical for extremal and nearly extremal
black holes except the value of ε. The negative values for Δfin

indicate the destruction of the event horizon at the end of the
interaction. However, if we choose δM = 0.01M(ζ = 0.01)

for the test field, for m = (1/2) (20) implies that

Δfin−min ∼ −M2ζ 2 (23)

This suggests that the overspinning problem due to fermionic
fields can be fixed by employing classical backreaction
effects for ζ = 0.01. For smaller values of ζ , the mag-
nitude of Δfin will also be small. In this case, alternative
semi-classical and quantum effects can potentially fix the
overspinning problem.

3 Self-energy as a backreaction effect

In this section we are going to calculate the backreaction
effects due to the self-energy of the test fields as they interact
with Kerr black holes. The interaction of the test field with
the black hole leads to an increase in the angular velocity of
the horizon. In a seminal work by Will this increase in the
angular velocity has been estimated as [65]

ΔΩ = δ J

4M3 (24)

where δ J denotes the angular momentum of the test field. In
our recent works [40,61] we argued that the induced increase
in the angular velocity of the horizon leads to an increase in
the superradiance limit for bosonic fields and prevents the
absorption of the challenging modes. The induced increase
in the angular velocity also induces a first order correction in
the self-energy of the test field.

E (1)
self = (ΔΩ)(δ J ) (25)

Previously it had been argued that self-energy corrections
should be taken into account to check the validity of cosmic
censorship [9]. The induced self-energy contributes to the
mass parameter of the space-time. If this contribution is suf-
ficiently large, the overspinning of Kerr black holes due to
the fermionic fields will be prevented. Using the expression
for ΔΩ given in (24), the self-energy can be expressed as:

E (1)
self = (δ J )2

4M3 (26)

This value should be added to the mass parameter to deter-
mine Mfin. We are going to calculate the contribution of
the self-energy only for the minimum value of Δfin which
was calculated in Sect. 2. If the contribution of the self-
energy is sufficiently large for the minimum value, we can
conclude that it is sufficiently large for all negative values.
The minimum value of Δfin was derived for a test field with
zeroth order energy at infinity δM = Mζ and frequency
ω � 0.125(1/M). In the previous section we argued that
classical backreaction effects can fix the overspinning prob-
lem for ζ ∼ 0.01. Therefore we calculate the backreaction
effects for a test field with ζ = 0.01. The self energy of this
test field can be calculated as

E (1)
self = (δ J )2

4M3 = m2ζ 2

4ω2M
= 0.0004M (27)

This self-energy should be added to the mass parameter of the
black hole. The addition of the self energy modifies the min-
imum value of Δfin, which becomes positive. However, we
should also consider the increase in the absorption probabil-
ity due to the increase in the angular velocity of the horizon.
This backreaction effect works against the validity of the
cosmic censorship as the absorption probability of the chal-
lenging modes increases. Though the effect of the increase
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in the absorption probability is small, we choose to include it
in our analysis for completeness. Notice that the absorption
probability (15) can be written as:

Γ = 1

4

(
(r+ − r−)2 + Ω2A2

4π2

)
ω2 (28)

For extremal black holes (r+ = r−) the modified value takes
the form

Γ ′ = 4

[(
1

2M
+ ΔΩ

)2

M4

]
ω2 (29)

where we have substituted Ω = (1/2M) and A = 8πM2

for an extremal black hole. For the test field with with δ J �
0.04M2

ΔΩ = δ J

4M3 � 0.01

(
1

M

)
(30)

Substituting this value in (29), we find that

Γ ′ = 1.0404M2ω2 (31)

The absorption probability slightly increases due to the
increase in the angular velocity of the horizon. Now, we
re-calculate Mfin and Jfin for an extremal black hole which
interacts with a test field with frequency ω = 0.125(1/M)

and energy δE = Mζ .

Mfin = M + Γ ′δE + E (1)
self

= M + 1.0404M3ζω2 + 0.0004M (32)

where we have substituted the values for E (1)
self and Γ ′, derived

in (27) and (31), respectively. Similarly we can calculate Jfin

Jfin = J + m

ω
δM = J + m

ω
Γ ′Mζ

= M2 + 1.0404mM3ζω (33)

where we substituted J = M2 for an extremal black hole.
Now we can calculate Δfin for an extremal black hole inter-
acting with a test field with frequency ω = 0.125(1/M) and
energy δE = Mζ .

Δfin = M2
fin − Jfin = 0.00047M2 (34)

The positive result for Δfin indicates that extremal black holes
holes cannot be overspun by spin (1/2) test fields, when
one employs the backreaction effects. Had we ignored the
increase in the absorption probability we would have derived
a slightly larger value for Δfin; namely Δfin ∼ 0.00049M2.
The effect of the induced increase in the absorption probabil-
ity appears to be small. We have chosen to include this effect
in our analysis for completeness.

The self energy of the test field does not depend on the
parameters of the black hole, therefore we can also use the
expressions (27), and (30) for the self energy and the induced
increase in the angular velocity for nearly extremal black

holes. We can calculate the modified value of the absorption
probability by using

Γ ′ = 1

4

(
(r+ − r−)2 + (Ω + ΔΩ)2A2

4π2

)
ω2 (35)

For a nearly extremal black hole parametrised as (9), we
substitute M2 − a2 � 2M2ε2, which leads to:

Γ ′ = 1.0410M2ω2 (36)

The final parameters of the black hole are given by

Mfin = M + Γ ′δE + E (1)
self

= M + 1.0410M3ζω2 + 0.0004M (37)

and

Jfin = J + m

ω
δM = J + m

ω
Γ ′Mζ

= M2(1 − ε2) + 1.0410mM3ζω (38)

For nearly extremal black holes, we calculate the final value
of the function Δ(M, J )

Δfin = M2
fin − Jfin = 0.00057M2 (39)

The positiveness of the final value of the function Δ(M, J )

implies that the formation of naked singularities is also pre-
vented in the case of nearly extremal black holes.

However the positive values derived for Δfin in (34) and
(39) are only valid for test fields with δM = 0.01M(ζ =
0.01). For smaller values of ζ the self-energy which depends
on ζ 2, will not be sufficiently large to make Δfin positive.
(See Eq. 27) In this case, extremal black holes (and nearly
extremal black holes that are sufficiently close to extremality)
can be overspun by fermionic test fields. For a numerical
example if we perturb an extremal black hole with a test field
with ζ = 0.001 and repeat the same calculation including
the effect of self-energy, the minimum value of Δfin can be
calculated as

Δfin = M2
fin − Jfin = −0.00002M2 (40)

Though the final value of the Δ function is negative, the
fact that it has a small magnitude suggests that overspinning
is likely to be fixed by alternative semi-classical and quan-
tum effects. In particular we have previously argued that the
evaporation of black holes acts as a cosmic censor as it car-
ries away the angular momentum of black holes more than
their masses [31]. For fermionic fields with very small ampli-
tudes the evaporation of the black holes will dominate the
effect of test fields and overspinning will be prevented. In any
case, we can conclude that the overspinning of black holes
by fermionic fields cannot be considered generic, when one
incorporates the absorption probabilities.
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4 Ferminoic fields and Kerr–Newman black holes

Previously we have shown that Kerr–Newman black holes
can be generically overspun by fermionic test fields [62]. As
in the case of Kerr black holes, the generic overspinning is
due to the fact that the absorption of low frequency modes
are allowed. In this section we re-evaluate the interaction of
Kerr–Newman black holes with neutral spin (1/2) test fields
by taking the absorption probabilities into consideration. The
expressions for the angular velocity of the event horizon, the
surface gravity, and the area of the event horizon of Kerr black
holes given in (16) are identically valid for Kerr–Newman
black holes. The expression for the absorption probability is
also the same as far as neutral fields are concerned. However
the radius of the event horizon is modified

r± = M ±
√
M2 − a2 − Q2 (41)

This leads to the modification of the absorption probability:

Γ = (M2 − Q2)ω2 (42)

For Kerr–Newman black holes, the absorption probability is
lower than that of a Kerr black hole with the same mass. A
smaller fraction of the challenging modes will be absorbed
by the Kerr–Newman black hole. Apparently it is less prob-
able to overspin a Kerr–Newman black hole. In Sects. 2
and 3 we have shown that the overspinning Kerr black holes
by fermionic fields is not generic when one incorporates the
absorption probabilities and employs backreaction effects.
The method we have adapted for Kerr black holes can be
exploited to derive the same result for Kerr–Newman black
holes. We start with a Kerr–Newman black holes which sat-
isfies

M2 − J 2

M2 − Q2 = M2ε2 (43)

We send in a test field with energy E = Mζ and frequency
ω. As in the case of Kerr black holes, the test field is partially
absorbed, and partially reflected back to infinity. In the final
case the background parameters of the space-time are given
by

Mfin = M + Γ (Mζ ) = M + (M2 − Q2)ω2Mζ

Jfin = J + m

ω
Γ (Mζ ) = J + (M2 − Q2)mωMζ

Qfin = Q (44)

We are going to calculate the final value of the Δ function
for an extremal Kerr–Newman black hole (ε = 0).

Δfin = M2
fin − J 2

fin

M2
fin

− Q2
fin (45)

Note that for an extremal black hole (M2 −Q2) = (J 2/M2).
The final parameters of the space-time can be expressed in
the form:

M2
fin = M2

(
1 + ω2ζ

J 2

M2

)2

J 2
fin = J 2

(
1 + ωζm

J

M

)2

Q2
fin = Q2 (46)

First we should note that the Δ function does not diverge to
minus infinity as ω approaches zero, which would have been
the case if we had ignored the effect of absorption proba-
bilities. As in the case of Kerr black holes, the Δ function
re-attains its initial value after the interaction with a fermionic
test field as ω approaches zero. Again, we are interested in
the critical value of the frequency ω for which Δfin attains
its minimum value. By expanding (1)/(M2

fin) to first order
in ζ and taking the derivative of Δfin with respect to ω, we
can calculate the critical value of the frequency which makes
Δfin minimum.

ωcrit � m(JM)

2(M4 + J 2)
(47)

The critical value explicitly depends on the angular momen-
tum of the Kerr–Newman black holes. Extremal black holes
with different values of angular momentum behave differ-
ently in the interaction with fermionic fields. Ignoring the
backreaction effects, the minimum value of the Δ function
is negative at the end of the interaction for any value of the
angular momentum parameter J .

For a numerical example we can start with an extremal
Kerr–Newman black hole with initial parameters: J 2/M2 =
0.5 and Q2 = 0.5. Let us perturb this black hole with a
spin 1/2 field with energy δM = 0.01M(ζ = 0.01) and
frequency:

ω = ωcrit � 0.11785
1

M

Note that the absorption probability for this field is Γ =
0.5ω2. After the interaction of this field with the extremal
Kerr–Newman black hole, the final parameters of the space-
time will attain the values formulated in (43). We can calcu-
late the final value of the Δ function.

Δfin = M2
fin − J 2

fin

M2
fin

− Q2
fin = −0.00020M2 (48)

The minus sign indicates that the final parameters of the
space-time represent a naked singularity rather than a black
hole. For larger values of J , the absorption probability will
be larger and the final value of the Δ function will be smaller.

In the previous section we have shown that the effect of
self-energy can fix the overspinning problem for Kerr black
holes for ζ ∼ 0.01. The expression derived for the self-
energy for Kerr black holes is identically valid for Kerr–
Newman black holes interacting with neutral test fields. For
the test field with frequency ω = 0.11785(1/M) we derive
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that:

E (1)
self = m2ζ 2

4ω2M
= 0.00045M (49)

Adding this term to the final value of the mass parameter
modifies the Δ function to fix the overspinning problem. For
J 2/M2 = 0.5 we derive that Δfin is modified as (we ignore
the increase in the absorption probability)

Δfin = 0.00114M2 (50)

In the limit J → 1 the modified value of the Δ function
is still positive: Δfin ∼ 0.001M2. Employing the backre-
action effects we can conclude that Kerr–Newman black
holes cannot be overspun by fermionic test fields with energy
δM = 0.01M(ζ = 0.01).

For smaller values of ζ , our arguments for the Kerr case
are also valid for Kerr–Newman black holes. The the effect
of self-energy – which depends on ζ 2 – is not sufficient to fix
the overspinning problem. For example, for ζ = 0.001 the
self energy becomes:

E (1)
self = m2ζ 2

4ω2M
= 4.5 × 10−6M (51)

This self-energy is not large enough to make Δfin positive.
If we re-evaluate the previous example (J 2/M2 = 0.5) with
ζ = 0.001, the self-energy given in (51) modifies the final
value of the Δ function as:

Δfin = −7 × 10−6M2 (52)

For larger values of J the final value of the Δ function will be
slightly smaller. Though the negative value of Δfin indicates
the formation of a naked singularity, the fact that its magni-
tude is small implies that the overspinning is not generic, as
we have argued for the Kerr case. In fact for Kerr–Newman
black holes the absorption probability is smaller, and over-
spinning is less probable.

5 Summary and conclusions

Previously we had shown that fermionic test fields lead to a
generic overspinning of Kerr and Kerr–Newman black holes
[62]. The absence of a lower limit to allow the absorption of
the test fields leads to the possibility of the absorption of the
test fields with arbitrarily low frequencies. For these fields
the contribution to the angular momentum parameter of the
space-time diverges. This renders the backreaction effects
irrelevant and the destruction of the event horizon becomes
inevitable. From this point of view, a solution of the overspin-
ning problem in the context of classical general relativity or
a semi-classical framework did not seem plausible.

In a very recent work we have suggested a new approach
to thought experiments to test the validity of the cosmic

censorship conjecture. We argued that only the fraction of
the test fields that is absorbed by the black holes con-
tribute to the background parameters of the space-time [61].
We have shown that this fixes the overspinning problem
due to bosonic test fields. Here, we have adapted this new
approach involving the effect of absorption probabilities,
to analyse the interaction of Kerr and Kerr–Newman black
holes with fermionic test fields. In Sect. 2 we have anal-
ysed the problem for Kerr black holes using both the con-
ventional and the new approach, which allows us to compare
the two approaches. We used the absorption probabilities
for fermionic fields which was derived by Page [64]. We
showed that the results are fundamentally altered when one
incorporates the absorption probabilities. As the frequency
of the incident field approaches zero, its contribution to mass
and angular momentum parameters of the space-time also
approaches zero. (See Eq. (18)). This is due to the fact that
the test field is entirely reflected back to infinity as the absorp-
tion probability approaches zero. (The same argument also
applies to bosonic fields as the frequency approaches the
superradiance limit [61].) Still there exists a range of param-
eters for the frequency of the incident field that can lead
to overspinning. In Sect. 3 we considered the backreaction
effects due to the self energy of the test fields. To calculate the
self energy, we used the increase in the angular velocity of the
event horizon estimated by Will [65]. We also considered the
increase in the absorption probability due to the increase in
the angular velocity of the horizon. We calculated the back-
reaction effects for the minimum value of the Δ function
defined in (11) and showed that the minimum value becomes
positive for test fields with a relatively large magnitude; i.e.
δM ∼ 0.01M . For smaller amplitudes the self-energy is also
small, and the final value of the Δ function remains negative.
However, the magnitude of the Δ function is very small,
which suggests that the over-spinning problem can be fixed
by alternative classical and quantum effects.

In Sect. 4 we extended the results for Kerr black holes to
Kerr–Newman black holes. We derived that the absorption
probability is lower for Kerr–Newman black holes compared
to a Kerr black hole with the same mass. Using this absorp-
tion probability, we showed that the final value of the Δ

function does not diverge to minus infinity as ω approaches
zero, however it can be negative for a judicious choice of
frequency. The expression for the self energy is the same for
neutral fields. We modified the final value of the Δ function
and derived the same results for Kerr black holes.

The problem of the generic overspinning due to fermionic
fields appears very challenging when one ignores the effect
of absorption probabilities (Ignoring the effect of absorption
probabilities corresponds to assuming Γ ∼ 1). One derives
that the Δ function diverges to minus infinity (See Eq. (11)
and Fig. 1). By incorporating the effect of absorption proba-
bilities, the drastic divergence problem is solved. When one
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also employs backreaction effects, one finds that overspin-
ning is prevented for test fields with relatively large mag-
nitudes ζ ∼ 0.01, and it becomes non-generic for smaller
amplitudes ζ ≤ 0.001. At this point, it seems very plausi-
ble that alternative semi-classical and quantum effects can be
employed to fix the overspinning problem for smaller ampli-
tudes.

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
has no associated data since it is purely theoretical.]
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