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Abstract: In this paper, we analyze the mission success performance and mission times of centralized, distributed,
and hybrid path-planning methods for a drone team whose mission is to find a target and inform the ground control.
We propose two methods that integrate connectivity into the search mission path decisions. We observe that even
though the coverage path-planning leads to lower search times, when target connectivity is also required, schemes that
incorporate end–end connectivity into path planning result in at least 50% better mission times for small communication
ranges and lower number of drones. Our results also indicate that methods to efficiently allocate resources to search and
communication tasks in mission-oriented drone networks need to be designed.
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1. Introduction
Drone network applications have grown significantly in the past decade. Drones are utilized as sensors, for
network provisioning, and for delivery among others [1]. While most drone or unmanned aerial vehicle (UAV)
use cases demand area coverage [2], it has been shown that some form of connectivity to a single entity (e.g.,
control center or base station) or multiple (e.g., mobile users and UAV swarm members) entities is also desirable.
Paths for UAVs deployed as part of the wireless network either to assist in disasters or to meet changing traffic
demands need to be planned according to the network conditions and available resources (in terms of power
and bandwidth) [3]. However, demand for connectivity can also appear in applications other than UAV-assisted
wireless networks. Connectivity can be event-driven as in search and rescue or delivery systems, periodic as in
remote sensing or environmental monitoring, or continuous as in surveillance systems. Furthermore, for fully
autonomous multi-UAV system operation, drone-to-drone communication will be highly necessary.

In the present paper, we consider a team of UAVs deployed for searching an area for a single target,
where the mission is considered successful once the target is found and this information is delivered to the
ground control. Cooperative search with UAVs has been considered from several viewpoints in the literature
including search time, detection accuracy, and energy consumption. In the following, we focus on related work
from the communications and networking viewpoint for coverage/target detection applications. Sometimes [4, 5]
bandwidth limitations are not considered in the path plan, whereas connectivity is considered as a constraint
[6, 7] or as a mission goal [8, 9]. The connectivity problem can be solved either by incorporating communication
needs into the UAV path-planning problem [10–14] or additional UAVs can be deployed as communication relays
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to provide connectivity to the searching UAVs [15]. These works clearly illustrate the diversity of communication
needs in target detection applications and the trade-off between coverage and connectivity very similar to the
earlier works on wireless sensor networks. Furthermore, the problem of search and connectivity optimization can
be addressed using different solution techniques including potential fields, mixed integer linear programming,
space-filling curves, particle swarm optimization, and genetic algorithm (GA) [10]. Previously [2], we have shown
that the communication needs in a UAV team depend on the application. In the present paper, we focus on a
search and rescue application and in contrast to previous works our main goal is to illustrate the connectivity
limitations in a variety of search (coverage) optimum path planners as well as analyzing the impact of integrating
connectivity constraints into the planning process on the mission performance of a UAV team. We provide
a general analysis that can be utilized in determining when to consider connectivity and in tuning algorithm
parameters according to the resources (for instance number of drones) at hand. Assuming a team of drones (with
onboard sensing, embedded processing, and wireless network interface), the aim of the present work is to analyze
the mission success performance of a drone team that flies paths with or without connectivity considerations. To
this end, we first introduce representative centralized and distributed path planning schemes that consider only
area coverage or multihop connectivity to the BS. By selecting representative schemes we enable generalization
of the findings of our analysis to other planners. For instance, while we use a search optimum algorithm that
utilizes a GA, the mission performance analysis is not bound to the optimization method but the optimization
outcome. Furthermore, the distributed and centralized approaches have some fundamental differences in their
level of prior knowledge, adaptability, robustness to mission changes, complexity, and autonomy and their
analysis provides insight into achievable mission outcomes for a range of path-planning algorithms. We then
propose two novel path-planning schemes that incorporate multihop connectivity into the coverage (search)
path-planning decisions. We analyze the performance of the UAV team in terms of mission success and time
including both target detection and BS notification. Our main contributions can be summarized as follows:

• Two novel multi-UAV path planners that integrate connectivity limitations into coverage (search) path-
planning algorithms

• Comparison of distributed and centralized path planners in terms of mission success and mission times
for ideal and nonideal sensing and channel conditions

• Connectivity analysis of path planners during a search and rescue mission

While we use simulations to conduct our analysis, we utilize real-world measurement outcomes from the
literature as much as possible when we determine the system parameter values and use cases [1]. Implementation
of our methods on a multi-UAV testbed is a future focus point to determine the impact of real-world limitations.
Our analysis shows that as the number of drones increases, network connectivity improves significantly, allowing
coverage-based schemes to have better success probabilities. However, under stringent connectivity conditions,
i.e. if the communication range and number of drones are low, connectivity-based distributed schemes out-
perform the coverage-aware centralized and distributed schemes by at least 50% by enabling notification as
soon as the target is detected. The proposed hybrid schemes overcome the limitations of path planning that
consider only coverage or connectivity under certain conditions. We further analyze the immediate notification
probability and the percentage of time that a target would be connected to the BS over the drone network. We
illustrate that while connectivity-based schemes may be more suitable for missions that require continuous con-
nectivity, coverage path planners might require notification delay tolerance. Our results indicate that methods
to efficiently allocate resources to search and communication tasks in drone networks need to be designed.
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The remainder of the paper is organized as follows. In Section 2, we provide the system assumptions and
performance metric definitions. The multi-UAV planners under investigation are presented in Section 3. The
results are given in Section 4 and the paper is concluded in Section 5.

2. System model

2.1. Assumptions

Here we provide assumptions common to the path-planning schemes in the present paper (system parameters
are summarized in Table 1). The UAVs take off from the ground BS together to search for a single target
that occurs at a random location (xt, yt) within the search region and lasts for a duration of td s. Once the
target is found, the ground personnel need to be notified. The search region, A , is a square area with sides
of length a . The UAV team consists of Nm drones, which fly with speeds equal to Vm at the same altitude
(h). In a practical system, the speed or more generally motion dynamics of the drones can affect the mission
times, sensing quality, wireless channel quality, etc. For a fair comparison between the path planning methods
and a better understanding of how connectivity factors into mission success, we consider constant speeds in the
present paper. We assume that each drone has a fixed communication range of rc , following distance-based
large-scale fading verified by our earlier measurements [1]. Several channel models have been considered for UAV
communications ([16] and references therein). The main characteristic of the UAV channel from measurement
campaigns is that it undergoes distance-based path loss and has a strong line-of-sight component, which leads
to Rician or more generally Nakagami fading. The exact distribution depends on the type of the drones, the
onboard transceiver, the antenna considerations, motion dynamics, the terrain, etc. In the present work, we
only require that there is a multihop link to the BS on average and the exact channel distribution, and hence
the instantaneous quality of the links and the end-to-end throughput is outside the scope of our study. However,
to illustrate the impact of the environment on the mission, we also provide a brief connectivity analysis with
log-normal shadowing corresponding to an urban search and rescue scenario with parameters taken from real-
world air-to-ground channel measurements [17]. We further assume that the drones know their own positions
(e.g., from onboard global positioning system (GPS)) and are equipped with sensors (e.g., cameras) to detect
the target. We assume that the drones rely on GPS to avoid collisions and consider the GPS update rate and
accuracy while determining the sensing period and direction change times for the distributed schemes (these two
parameters determine how closely the drones can fly). Further sense-and-avoid techniques are not considered.
We use a simplified sensing model. We assume that the UAVs have a fixed sensing range of r and as soon as the
target is within the sensing coverage it can be detected without error. This binary method of detection, though
simplified, is sufficient to analyze the performance trends of the path planning strategies. The impact of sensor
imperfections and more realistic sensing models have been heavily analyzed and integrated into coordinated
searches in earlier works [5, 18]. We will briefly discuss the implications of considering error-free sensing in
Section 3. We will also illustrate the impact of imperfect sensing on the target detection performance of the
UAV team in Section 4.

2.2. Definitions
The UAV mission is defined as finding a target in a search area and notifying the ground personnel in a given
time. Mission success probability Ps is given by

Ps = Pr{BS notified within td} (1)
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The mission depends on both the coverage and connectivity of the UAV team. Coverage relates to target search
and detection and a target is detected if it is sensed by at least one UAV within target duration. For a given
time t and UAV position set of XY t

u = {(xi(t), yi(t)) : i = 1, 2, ..., Nm} , the probability of detection is given by

Pd =

{
1, ifmin{dti} ≤ r and t ≤ td
0, otherwise (2)

where dti is the Euclidean distance between the target and the UAV i , i = 1, 2, ..., Nm at time t :

dti =
√

(xi(t)− xt(t))2 + (yi(t)− yt(t))2 (3)

Once a target is detected, the position of the target needs to be propagated to the BS. We consider
multihop connectivity, where two nodes are connected as soon as they are within each other’s communication
range rc . UAVs forward the information about the target to their neighbors at the time of contact. At a given
time t , the UAV network can be specified as a graph Gt = (N,Et) , where N is the set of UAVs and the BS
(i.e. |N | = Nm + 1) and Et is the wireless links satisfying

Et := {edge(j, i) if and only if dij(t) ≤ rc,∀i, j ∈ N}, (4)

where dij(t) is the Euclidean distance between nodes i and j in set N . Without loss of generality, we set node
1 to be the BS. The corresponding adjacency matrix At is defined as At = (aji(t)) , 1 ≤ j, i ≤ Nm + 1 , where

aji(t) =

{
1, if(j, i) ∈ Et

0, otherwise (5)

Let us denote the set of UAVs with knowledge of the target location by R . The BS can be notified if and
only if there exists a path in the graph Gt between any UAV in R and the BS at any time t ≤ td . To find the
probability of notification and hence mission success probability, we do a depth-first search over the adjacency
matrix At to determine whether a path exists between the nodes in R and the BS at any time t ≤ td . We
also analyze the probability of simultaneous detection of a target and BS notification to understand the portion
of time spent for establishing connectivity. Finally, we define target reachability as the percentage of time the
target has a multihop connection to the BS over the drone network. Although our mission is considered a
success once the BS is notified of the target location, target reachability can be relevant to other applications
such as monitoring or surveillance. The reachability performance presented in the present paper can serve as a
benchmark for designing path-planning algorithms that aim, for instance, to track targets.

3. Multi-UAV path planning

In the following, we first describe multi-UAV path-planning algorithms that either focus on fast area coverage or
multihop connectivity to the BS. Then we propose two algorithms that consider both coverage and connectivity
in the planned paths. For the centralized algorithms, the paths are generated at the BS prior to the mission,
utilizing full knowledge of the search area and the UAV team. For the distributed algorithms, the paths are
generated during flight based on local information. More specifically, each UAV periodically senses its neighbors
and decides if a direction change is necessary, depending on the relative positions of the UAVs in its vicinity.
The algorithms return the next direction (θ+ ) during the mission at the end of the sensing period. If, at the
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Table 1. System parameters.

Parameter Description
A Square search area (a× a)
Nm, Vm, h Number, velocity, and altitude of UAVs
rc Communication range of a UAV
r Sensing range of a UAV
td Target (event) duration
ts Sensing period

time of direction change, a UAV does not have any neighbors, the direction is not changed. Note that the
sensing period is a design parameter and depends on the system parameters such as Nm and r . The same
algorithm is run on all UAVs. If a UAV estimates that it would leave the search area at the end of the sensing
period, it chooses a random direction toward the search area before the period is over. A qualitative comparison
of the benchmark path-planning algorithms is given in Table 2. An in depth theoretical analysis of centralized
and distributed cooperative UAV planning algorithms under investigation is conducted in Khan et al. [18] and
Yanmaz et al. [19], respectively.

Table 2. Comparison of path-planning methods.

Property Multiple traveling salesmen
problem (mTSP)

Coverage-based
(CovB)

Connectivity-based
(ConB)

Online No Yes Yes
Centralized Yes No No
Prior knowledge Yes No No
Node failures/
additions

Needs to replan Robust Robust

Coverage Guaranteed In probability N/A
Connectivity N/A N/A In probability
Onboard processing Not required Detection, direction

decision
Detection, route
discovery, direction
decision

Suitable for Delivery, environmental
monitoring, infrastructure
inspection, search, etc.

Crop spraying,
environmental
monitoring, search,
mapping, etc.

Surveillance, network
provisioning, event
streaming, etc.

3.1. Coverage-aware path planning

Coverage refers to the area search phase of the mission and the goal of the coverage-aware path-planning schemes
is to minimize search times and/or guarantee full area-coverage within a given time. We assume perfect sensing
in the present paper. However, in a practical system where sensing is of probabilistic nature and there are sensor
errors, the centralized schemes have a likelihood of missing a target since there is no redundancy (overlap) in
the drone paths. Methods have been proposed to improve the search performance for such schemes including
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belief map merging, repetitive sensing, multiple tours, etc. [5, 18]. Distributed path-planning schemes on the
other hand have an inherent redundancy. Furthermore, they can be more easily extended to include sensing
quality in the decision making process by adding their observations (sensor readings) to the already exchanged
local information to determine their paths.

3.1.1. Path planning with the multiple traveling salesmen Problem

UAV path planning can be modeled as a multiple traveling salesmen problem (mTSP), where the cities to be
visited are determined by dividing the search region A into (a/r)2 equal-sized, disjoint cells. The objective of
the mTSP is to determine a set of routes for Nm drones such that the total traveled distance is minimized. The
routes should start and end at the BS and each cell must be visited exactly once by only one drone. Note that
mTSP is an NP-hard problem and can be solved using several methods including dynamic programming, ant
colony optimization, and particle swarm optimization to name a few [20]. Each approach has different time and
space complexity. Depending on the computation limitations at the BS of the practical system to be deployed,
any of these algorithms can be used. Since in the present paper we are interested in the connectivity analysis
of the resulting paths, we do not have any presumptions regarding computation time and we set up a GA for
the mTSP path planner [21]. The algorithm takes the cell locations, number of UAVs (Nm ), minimum tour
length for each UAV, population size, and number of iterations as input and computes the paths to be traveled
prior to flight. The mTSP planner does not consider any connectivity constraints but aims only to minimize the
cooperative search time. However, by generating paths that lead back to the home base, we enable notification
when the UAVs fly back at the latest.

3.1.2. Coverage-based path planner

An alternative to the centralized mTSP planner that has complete knowledge about the search area is the
distributed coverage-based (CovB) path planner, which utilizes artificial potential fields (APFs) [22]. Only the
boundaries of the search area are known by the UAVs prior to the mission. The CovB planner aims to minimize
the overlap between sensed areas by the individual members of the UAV team, by allowing neighboring UAVs
to “push” each other with forces inversely proportional to the distance between them.

We present the forces on a given UAV in nonboundary areas next. For details of the algorithm readers
are referred to Yanmaz and Guclu [22]. We use θ̂ notation for the unit vector with direction θ . The resultant
force applied on a given UAV i with current direction θci and a sensing neighbor set of Ns

i at the time of
direction change is

⃗Rcov
v = F⃗ii +

∑
j∈Ns

i

F⃗ij , where (6)

F⃗ii =
1

r
θ̂ci and (7)

F⃗ij =
1

dij
θ̂ij and θij = tan−1

(
yj − yi
xj − xi

)
(8)

For convenience, time index is dropped from the UAV positions (xi(t), yi(t)) and the distance between
UAVs i and j , dij(t) . The next direction θ+i is the angle of the resultant force ⃗Rcov

v given in Eq. (6).
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3.2. Connectivity-based path planner

The connectivity-based (ConB) path-planning algorithm is also distributed and utilizes APFs [9]. In addition
to the current positions and directions of neighboring UAVs, the resulting network graph and connectivity are
also utilized in the decision-making process. In particular, in nonboundary areas, within every sensing period
the connectivity of a given UAV i to the BS as well as its neighbors is checked at incremental time intervals
utilizing adjacency matrices (Eq. (5)) and depth-first search. If at any time within the sensing period the UAV
i would lose its connectivity to the BS, direction change would be initiated. If no disconnections are predicted,
then the direction change is done at the end of the sensing period as usual. Using the same conventions as
above, the resultant force applied on a UAV i for the ConB algorithm is

⃗Rcon
v = F⃗ii + F⃗ij , where (9)

F⃗ii = θ̂ci and (10)

F⃗ij = θ̂ij and θij = tan−1

(
ycontactj − y+i

xcontact
j − x+

i

)
(11)

In Eqs. (9) and (11), j represents the neighbor of UAV i that would have the longest contact duration,
if both UAVs kept their current headings and (xcontact

j , ycontactj ) is the location where UAVs i and j would lose
contact. The goal is simultaneously avoiding too many direction changes and isolated UAVs in the network.
The position of node i at the end of next time increment is denoted by (x+

i , y
+
i ) . The next direction θ+i is the

angle of the resultant force ⃗Rcon
v given in Eq. (9).

3.3. Joint connectivity and coverage-aware path planning
In the following, we propose two path planners that utilize both coverage and connectivity in the decision-making
process: (i) mTSP-ConB and (ii) ConCov.

mTSP-ConB is a hybrid of the mTSP and ConB algorithms (see Algorithm 1). It reserves Nr drones only
for searching and the remaining Nm−Nr nodes assist in providing connectivity. To this end, Nr drones follow
mTSP paths that are generated before flight, whereas the remaining drones update their positions according to
ConB during flight. Nr can be chosen such that the search is completed within a given time. The Nm − Nr

drones, while redundant for search purposes, help achieve better resource utilization for the overall mission
goal, which also includes BS notification. The ConCov algorithm, on the other hand, is fully distributed and
combines the ConB and CovB algorithms (see Algorithm 2). In particular, ConCov gives a weight, α , to search
and notification goals of the mission. To this end, the resultant force applied to each UAV is

R⃗v = α
⃗Rcov
v

| ⃗Rcov
v |

+ (1− α)
⃗Rcon
v

| ⃗Rcon
v |

, (12)

where Rcov
v and Rcon

v are given in Eqs. (6) and (9), respectively. The resultant force combines the “repellant”
force of CovB against coverage overlaps with the “attraction” force of ConB against disconnections. The next
direction θ+i in this case is the angle of the resultant force R⃗v . Choice of α depends on how much weight is to
be given on connectivity. As α goes to zero (one), ConCov approaches ConB (CovB).

Both hybrid schemes have advantages regarding notification performance over their native mTSP and
CovB at the cost of search time. However, since the mission involves both search and notification, the mission
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Algorithm 1 mTSP-ConB
Part 1: Offline from Section 3.1.1
Input: A , Nr , Vm , sink location, minimum tour length, population size, number of iterations
Output: Nr mTSP paths, {PN}
Part 2: At each UAV i for Nm −N UAVs
Input: A , ts , time increment (ti ), r , rc , Nm , Vm , sink location, {PN} ,θci
Output: Next direction of UAV i : θ+i

• Compute position of UAV i at the end of next ti , (x+
i , y

+
i ) .

• Check if ts sec has elapsed since last direction change.

– NO: boundary check
∗ If (x+

i , y
+
i ) ∈ A , return θ+i = θci

∗ Else, return θ+i = random toward A .
– YES: direction update

1. Network graph estimation
∗ Assuming all UAVs kept their headings, find neighbors of UAV i and form the graph at

the end of ti , (G+(N+, E+)) and at the end of ts , (Gnext(Nnext, Enext)) using Eq. (4)
for the edges.

∗ Determine the shortest-path route to the BS from i using depth-first search over at the
end of ti ,R+ , and ts , Rnext , using G+(N+, E+) and (Gnext(Nnext, Enext)), respectively.

2. Connectivity check: Is there a route from UAV i to BS in Rnext ?
∗ YES: return θ+i = θci

∗ NO: return θ+i = ∠ ⃗Rcon
v using Eq. (9).

success probability can also be improved depending on the choice of the design parameters Nr and α . Our
future work focuses on determining the parameter values for optimized mission success probability. In addition
to the mission performance, the hybrid algorithms also have some indications regarding computation times. For
a given Nm , the mTSP-ConB scheme will gain in computation time due to fewer salesmen (Nr ) in the offline
phase, but suffer due to the introduction of depth-first search in the ConB component. Similarly, ConCov will
suffer over CovB due to depth-first search. An advantage of mTSP-ConB is that it guarantees coverage at a
given time, which ConCov can guarantee only in probability. However, the fully distributed nature of ConCov
results in a more robust system against node failures or environment changes.

4. Results and discussion
4.1. Simulation setup
In this section, we compare the performances of mTSP and APF-based UAV path-planning strategies via Monte
Carlo simulations over 2000 runs. For the target detection performances of CovB and ConB schemes readers are
referred to Yanmaz [23]. The simulation parameters are given in Table 3. For the GA1 of mTSP and mTSP-Con,
the population size is 80 and number of iterations is 5000. For the given r and a , the number of grid points
for mTSP such that the search area is fully covered is 64. The area size and the velocity are chosen taking into
account a maximum flight time of 1 h. The region and the velocity can be scaled down or up depending on
the flight time of the deployed drones. The communication range rc is determined using theoretical free-space
path loss over air–ground links and mapping different levels of desired throughput rates (i.e. high, medium,

1We use Joseph Kirk’s implementation in MATLAB.
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Algorithm 2 ConCov
At each UAV i
Input: A , ts , time increment (ti ), r , rc , Nm , Vm , sink location, θci , α
Output: Next direction of UAV i : θ+i

• Compute position of UAV i at the end of next ti , (x+
i , y

+
i ) .

• Check if ts s has elapsed since last direction change.

– NO: boundary check
∗ If (x+

i , y
+
i ) ∈ A , return θ+i = θci

∗ Else, return θ+i = random toward A .
– YES: direction update

1. Compute repulsive forces.
∗ Find UAVs within sensing range r of UAV i and form sensing neighbor set Ns

i

∗ Compute ⃗Rcov
v from Eq. (6).

2. Compute attractive forces.
∗ Network graph estimation (see Algorithm 1)
∗ Connectivity check: Is there a route from UAV i to BS in Rnext ?

· YES: ⃗Rcon
v = θ̂ci .

· NO: Compute ⃗Rcon
v from Eq. (9).

3. Compute resultant force R⃗v from Eq. (12).
– return θ+i = ∠R⃗v

low) to short, medium, and long distances. The sensing period is chosen in accordance with the expected GPS
position update period on real vehicles. The maximum flight time is computed according to the full-coverage
path generated by mTSP for 2 UAVs and serves only as a reference limit. For the ConCov algorithm, we set
α to 0.5 and give equal weight to coverage and connectivity. For the mTSP-Con algorithm, we set Nr for the
offline phase to 6. We selected this value according to the search performance of native mTSP for the given
number of cities and the flight times of practical drones. We study a single stationary target scenario, where
the target appears at a random location within the search area and lasts for a duration of td s. Nm drones are
deployed for the mission. Assuming a target is detected without error as soon as it is within sensing range of a
UAV, the performance metrics of interest are: i) probability of mission success (i.e. detection and notification
within td ); ii) mission phase times; iii) target reachability.

Table 3. Simulation parameters.

Parameter Value
a 4000 m
Vm 5 m/s
r 500 m
Sensing period 2 s
Maximum flight time 4000 s
rc {500, 1000, 2000}m
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4.2. Performance comparison

We first compare the computation times of the native schemes (mTSP, CovB, and ConB). Figure 1 shows
the time required to generate the end-to-end paths for each scheme over Nm (if all paths are assumed to be
generated offline for fair comparison). The algorithms are implemented on an Intel Core i7-7820HQ processor
at 2.90 GHz (16 GB RAM). Due to the distributed nature and fewer operations, the computation time of CovB
is the lowest. The computation time of mTSP depends on the number of cities (cells), number of iterations,
and the population size, and does not change significantly with Nm . For ConB, on the other hand, Nm has
a direct impact on the depth-first-search phase of the connectivity check to the BS. The computation times of
the hybrid schemes will also depend on Nm due to the connectivity component and will approach ConB as Nm

increases and will be much higher than that of CovB. For smaller Nm , the computation time of mTSP-Con in
comparison to mTSP will depend on the number of reserved search nodes (Nr ).

0 5 10 15 20 25 30 35 40 45 50

Number of Nodes

0

2

4

6

8

10

12

14

16

18

C
o

m
p

u
ta

ti
o

n
 t

im
e 

(s
)

ConB
CovB
mTSP

Figure 1. Path plan computation times versus number of nodes, when rc = 500 m.

Next, we study the impact of target duration and number of drones on the probability of detecting the
target and informing the BS within td . Figure 2 shows the probability of success versus target duration td ,
when Nm = {10, 22} , whereas Figure 3 shows the probability of success versus number of drones for fixed td .
For this area size, a transmission range of rc ≈ 2800 m would guarantee single-hop connectivity to all drones.
Observe from the figures that as rc becomes larger mission success probability approaches 1 even with short
target durations. In the case of ConB, the drones are allowed to spread more with higher transmission ranges. In
the case of mTSP and CovB, with smaller rc the drones can inform the BS mostly on their return path. When
td = 4000 s, the mTSP scheme can finish the search mission even with 2 drones, and hence the mission success
probability of mTSP in this case is 1. Due to the constraints on connectivity, adding more drones does not
help ConB, whereas higher spatial density (due to higher rc and/or Nm ) improves the performance of mTSP
and coverage-based schemes, significantly. The hybrid schemes highly benefit from integrating connectivity
in the search decisions. The performance improvement of both schemes over ConB is most evident when rc

is low. Between ConCov and mTSP-Con schemes, we observe that as Nm is increased ConCov significantly
outperforms mTSP-Con, implying that while mTSP-Con guarantees search time it still suffers from delayed
notification. Due to the equal weight given to the search and connectivity components of ConCov, the drones
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can simultaneously spread out and stay connected. These results imply that while hybrid schemes utilize the
available resources better than ConB, they might still require more resources than mTSP and CovB, especially
when the detection task dominates the mission times.
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Figure 2. Probability that the target information is delivered to the BS within td versus target duration.
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Figure 3. Probability that the target information is delivered to the BS within td versus number of nodes.

Figure 4 shows the total mission time and the ratio of time spent for the search when td = 4000 s.
Figure 4a shows that as Nm increases the performance of all schemes converge. However, the mission time
of ConB is less than half of that of the other schemes for small Nm . While mTSP and CovB schemes aim
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to optimize search time, they suffer from lack of coordinated connectivity. Even when connectivity is added
to the decision, total mission time is still higher for ConCov and mTSP-Con due to the time spent searching.
This can be better observed in Figure 4b. For small Nm , the search time is dominant due to low resources.
For higher Nm , search time also dominates over notification time due to high level of connectivity and hence
improved immediate notification times. However, in between, the time spent for notification phase is highly
significant for the native coverage schemes, implying that the likelihood of having connectivity to the BS at the
time of detection is very low. ConCov has better notification times (30% of mission time compared to 45%,
when rc = 1000 m) however, still much lower than ConB (10% of total mission time for higher rc ). There
is clearly a trade-off between immediate notification and fast detection. Observe that while the total mission
time decreases monotonically with increasing Nm , there exists a number of drones that minimize the detection
phase duration of the mission. While omitted here, similar trends have been observed for shorter td as well.
Therefore, depending on the priority of connectivity and tolerance to delays in notification, the choice of best
path planning scheme changes.
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Figure 4. Mission times versus number of nodes when td = 4000 s.

We show in Figure 5 the probability of simultaneous detection and BS notification versus Nm . For short
td , since the target is detected only if it is closer to the BS, immediate notification is highly likely. However,
as td increases, targets that are located farther from the BS can also be detected and the issue of notification
becomes more critical. Therefore, we choose td = 4000 s to give the drones a chance to spread. For high rc the
performance of all schemes converges to 1; hence these results are omitted. Observe that ConB, while suffering
from lower detection probabilities, is much more likely to inform the BS at the time of detection. ConCov follows
ConB. For lower rc , the immediate notification probability of mTSP is the lowest (around 0.2), indicating that
the BS is most likely notified on the return paths of drones. If some notification delay can be tolerated, mTSP
preserves its advantage of minimum traveled distances in terms of mission success.

Finally, we compare the target reachability of the path planners versus Nm , when td = 4000 s. It is
computed by determining the percentage of target duration the target can be connected to the BS over a
multihop link. Observe from Figure 6 that for small rc all schemes have low target reachability as expected.
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The ConB scheme outperforms the others in this case. As rc is increased, we observe that ConCov and CovB’s
performance starts exceeding that of ConB as Nm increases, since ConB still suffers from lower detection
probability. The mTSP scheme is the worst of all schemes even with higher rc . Therefore, even if for coverage
applications mTSP might be a good fit, for applications that might require continuous connectivity, such as
surveillance, it suffers from lack of connectivity in the path decisions.
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Figure 5. Probability of simultaneous detection and no-
tification versus number of nodes when td = 4000 s.

5 10 15 20 25 30 35 40 45 50

Number of Nodes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ar

ge
t 

re
ac

h
ab

il
it

y

ConCov
ConB
CovB
mTSP
mTSP-Con

r
c
 = 1000m

r
c
 = 500m

Figure 6. Percentage of time the target is connected to
BS over a multihop link versus Nm when td = 4000 s.

4.3. Impact of nonideal sensing and channel conditions
In this section, our aim is to briefly illustrate how the performance trends are affected when the simplified
sensing and connectivity assumptions are relaxed toward more realistic models. Figure 7a shows the probability
of detection versus probability of missing a target, when Nm = 10 , rc = 500 m, and td = 1000 s. In this
scenario, we relax the error-free sensing assumption and assume that when the target is within the sensing
coverage of any UAV, there is a probability that the target will not be detected. This implies that the target
location will need to be sensed multiple times to detect the target with a high probability. The connectivity
of the network is not affected by the sensing errors. Observe from Figure 7a that under ideal conditions when
td = 1000 s, coverage-based and hybrid schemes (mTSP, CovB,mTSP-Con, ConCov) are able to detect the
target with probability higher than 90% (can also be seen in Figure 2a). When there are sensor errors, the
detection probability decreases as expected. As was shown also previously [24], the detection probability is
not significantly affected if the miss probability is not too high. Further observe that performance trends are
changing in a similar manner for all schemes. This means the path planners can tolerate some errors if there is
enough redundancy (i.e. sufficient number of UAVs and/or longer target duration) and under these conditions
the findings from ideal conditions could be generalized. Further analysis is required to determine the robustness
of the path planners against sensing errors and is outside the scope of the present paper; however, interested
readers are referred to Khan et al. [18] for analysis of methods that utilize repetitive sensing and information
sharing to overcome sensing imperfections.

Next, we analyze the impact of a more realistic channel model on the BS notification performance of the
UAV team. In Section 4.2, we have assumed that the communication coverage area is a disc (i.e. two nodes
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are connected if they are within rc of each other). The communication range corresponded to the distance-
dependent path loss model. In the following, we change the channel to log-normal shadowing, which corresponds
to large-scale fading in urban areas and includes fluctuations around the distance-dependent path loss due to
multipath fading. While there are many other channel models, we adopt log-normal shadowing since it has been
shown to fit the case where the UAV is flying over grass lawns and among buildings [17], which is suitable for
an urban search and rescue scenario. We take the path-loss parameters from the air–ground link measurement
campaign in Yang et al. [17]; i.e. the path loss exponent, n , is 1.75 and the standard deviation, σ , due to
shadowing is 3dB. The corresponding path loss at a distance (d) is given by

PL(d) = PL0 + 10nlog10

(
d

d0

)
+ S, (13)

where PL0 is the path loss at a reference distance d0 = 1 m and S is the shadow fading in log-normal
distribution with N(0, σ2) . Figure 7b shows the probability of immediate notification versus Nm , when
rc = 1000 m and td = 4000 s (for comparison see Figure 5). Observe that the performance trends are similar to
those of the simplified communication model, whereas the notification probability is improved slightly for mTSP
schemes. Further analysis and preferably real-world tests are required to determine the real-time networking
performance of the UAV team.
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Figure 7. (a) Probability of detection versus probability of target miss, when Nm = 10 , rc = 500 m, and td = 1000 s;
(b) Probability of immediate notification versus Nm , when rc = 1000 m and td = 4000 s.

5. Conclusions
In this work, we have analyzed centralized and distributed multi-UAV path planners for a search and rescue
mission, where information about a detected target needs to be propagated to the ground BS. We have proposed
two novel multi-UAV path planners that integrate connectivity limitations into coverage (search) path-planning
algorithms. We have compared the performance of the proposed and benchmark planners in terms of mission
success and mission times for ideal and nonideal sensing and channel conditions.
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Our results indicate that the impact of connectivity on the mission success probability and total mission
times is most evident when communication resources (i.e. range and spatial density) are highly stringent.
Therefore, the suitability of a given path-planning strategy for a given drone mission highly depends on the
network connectivity requirements. While connectivity-aware path planning can provide simultaneous detection
and notification as well as good target reachability, it suffers from longer search times due to slower spreading
than the coverage-based schemes. On the other hand, mTSP schemes can find the targets fast, but require
more tolerance to notification delays. Therefore, for a given application, the most suitable path planner and
required resources will change. Our future work will focus on determining the optimum allocation of resources
to different tasks of the mission.
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