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Abstract: This study represents a decomposition heuristic approach for simultaneous lot sizing and 
scheduling problem for multiple product, multiple parallel machines with secondary resources. The 
motivation of the study comes from the real-world instance of a plastic injection plant at Vestel Electronics. 
The plastic injection plant requires plastic injection molds at the planner’s disposal, in order to produce 
variations of products, by the compatible plastic injection machines. The variations on the molds and the 
mold changes on the machines bring out sequence dependent major and minor setups. Since each machine 
requires an operator, we have extended the formulation with workforce and shift planning. Results show 
that proposed heuristic yields comparable solutions to that of exact model for small and medium size 
instances; and provides schedules for the large size instances, for which exact model cannot find a feasible 
solution in the allotted time. 
Keywords: Simultaneous lot sizing and scheduling, decomposition heuristics, sequence dependent setups, 
secondary resources, workforce planning, shift planning. 

 

1. INTRODUCTION 

Integrating operational problems and developing solution 
strategies that tackle these problems simultaneously have 
recently gained the attention of both researchers and 
practitioners, Copil et al. (2016). The lot sizing decisions are 
made in order to economically balance the variations of the 
demand by balancing inventory and setup costs and, 
scheduling decisions define the sequence of production orders 
of different products in the planning horizon. For the problems, 
where sequence dependent setups matter, it is required to make 
lot sizing and scheduling decisions simultaneously. The 
simultaneous lot sizing and scheduling models are classified 
as large bucket and small bucket models. The large bucket 
models use macro-periods and small bucket models consider 
micro-periods to sequence the products within the planning 
periods under resource capacity constraints. We provide a 
reformulation of the capacitated lot sizing problem with 
sequence-dependent setups (CLSD), which is presented in 
Haase (1996). This approach decomposes the problem into 
macro-periods and the sequence of the products are formulated 
as it is in a travelling salesman problem (TSP). 

Kwak and Jeong (2011) proposes a two stage hierarchical 
approach to single machine multi product CLSD. In the first 
stage, capacitated lot sizing problem (CLP) is solved. In the 
second stage, lot sizes found in the CLP problem are fixed and 
the lower level scheduling problem is solved by minimizing 
the make span of the production. Meyr and Mann (2013) 
propose a hierarchical solution approach for large scale 

parallel non-identical machine general lot sizing and 
scheduling problem (GLSP) with sequence dependent setups 
by decomposing the problem into non-identical sets of single 
machine problems. The decomposition assigns demand and 
initial inventories to the single machines and then the parallel 
problems are solved iteratively. The presented heuristics aims 
to find the best decomposition, which gives feasible, and 
potentially, the optimal solution. Tavaghof-Gigloo et al. 
(2016) study workforce planning and the effect of flexible shift 
and overtime deviations on the overall performance of the 
production plans. Their study considers lot sizing but does not 
include the scheduling decisions for the production plans. 
Hemig et al. (2014) studies integrated production and staff 
planning problem in automotive industry, which does not 
consider the setup times and costs.  

In this work, we consider the scheduling problem of Vestel 
Electronics’ plastic injection plant. Vestel Electronics is one of 
the largest TV manufacturers in the World and largest in 
Europe producing over 10 million TV sets annually. A typical 
TV consist of electronics, metal and plastic parts. This paper 
concentrates on the plastic parts production plant, which 
operates on tool machine pairs, require setup times in order to 
change the tools on the machines. In the plastic injection plant 
we consider, the plastic injection molds are mounted on the 
machines and production is made by injecting the plastic raw 
material into the mold. A typical plastic injection mold has 
version inserts which are interchangeable and via these 
interchanges, it is possible to produce products with different 
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attributes. The interchange of the molds and the versions 
introduce major and minor sequence dependent setups to the 
problem.  

As a matter of course, the shift plan may change according to 
the seasonal demand changes and/or sudden increases in the 
demand of specific products. These changes affect the capacity 
requirements, which in turn affect the workforce and shift 
planning decisions. In our work we extend the CLSD 
formulation to include workforce and shift planning decisions; 
as well as to cover secondary resources like molds. Extended 
formulation is good at solving small instances, however to 
solve larger instances, a hierarchical decomposition heuristic 
is proposed. The proposed method shows promising results 
compared to the exact method especially for larger size 
instances. 

The rest of the paper is organized as follows: Section 2 
presents the notation and exact formulation used in the study. 
Section 3 describes the details of the proposed decomposition 
heuristic. Numerical results are discussed in Section 4 and 
concluding remarks are presented in Section 5. 

2. EXACT FORMULATION AND EXTENSIONS WITH 
SECONDARY RESOURCES 

1.1 Parameters and Decision Variables of the Problem 

The notation for parameters used in the exact CLSD 
formulation is given below: 

𝑆𝑆𝑇𝑇 Set of periods 
𝑆𝑆𝐿𝐿 Set of machines 
𝑆𝑆𝑀𝑀 Set of molds 
𝑆𝑆𝐼𝐼 Set of products 

𝑀𝑀 A big number set to the maximum number of 
products that can be produced in one period 

𝐵𝐵𝑖𝑖
0 Initial backlog for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐵𝐵𝑚𝑚
0  Total initial backlog of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝑆𝑆𝑖𝑖

0 Initial inventory for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝑆𝑆𝑚𝑚
0  Total initial inventory of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝑙𝑙

𝑃𝑃 Unit production cost of machine l (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿) 
𝐶𝐶𝑖𝑖

𝐻𝐻 Unit holding cost of product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐶𝐶𝑚𝑚
𝐻𝐻𝑀𝑀 Unit holding cost of the set of products mold m is 

capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝑖𝑖

𝐵𝐵 Unit backlogging cost of product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐶𝐶𝑚𝑚
𝐵𝐵𝑀𝑀 Unit backlogging cost of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵 Cost of labor per worker 
𝐶𝐶𝑂𝑂𝑇𝑇 Cost of overtime per worker 
𝐶𝐶𝑆𝑆𝑇𝑇 Setup cost per second 

𝐷𝐷𝑖𝑖𝑖𝑖  Demand for product i at period t  
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝐷𝐷𝑚𝑚𝑖𝑖  Total demand for the set of products mold m is 
capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝐷𝐷𝑖𝑖𝑖𝑖
𝑊𝑊  1 iff a demand is present to mold m at period t 

(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑇𝑇𝑖𝑖𝑖𝑖
𝑆𝑆𝑇𝑇 Set up time from product i to product j  

(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑗𝑗 ∈ 𝑆𝑆𝐼𝐼) 

𝑇𝑇𝑚𝑚
𝑆𝑆𝑇𝑇𝑀𝑀 Set up time for mold m (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶  Cycle time for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝑇𝑇𝑚𝑚
𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 Cycle time for product i (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝑇𝑇𝐶𝐶 Total available production time in one shift 

𝑄𝑄𝑊𝑊 Number of available operators for the shifts per 
day 

𝑄𝑄𝑂𝑂𝑇𝑇  Number of available workers for overtime 
𝑄𝑄𝑚𝑚

𝑀𝑀 Mold quantity for mold m (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝑄𝑄𝑚𝑚
𝑃𝑃  Number of products mold m is capable to 

produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝛺𝛺𝑚𝑚𝑖𝑖  
1 iff mold m is capable to produce product i, 0 
otherwise (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝛤𝛤𝑇𝑇  Percentage of increase in a shift duration if 
overtime is made 

The notation for the decision variables is presented below: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 
1 iff machine l produces product i and j 
consecutively at period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼 ∪ {0};  
(∀𝑗𝑗 ∈ 𝑆𝑆𝐼𝐼 ∪ {0}; ∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼  1 iff machine l produces product i at period t (∀𝑖𝑖 ∈

𝑆𝑆𝐼𝐼 ∪ {0};∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀  1 iff mold m is setup at machine l at period t 

(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼  Production quantity for product i produced at 

machine l at period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑞𝑞𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀  

Total production quantity of products, mold m 
produced, at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑠𝑠𝑖𝑖𝑖𝑖
𝐼𝐼  Inventory for product i produced at machine l at 

period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑠𝑠𝑚𝑚𝑖𝑖
𝑀𝑀  

Total inventory of the products that mold m is 
capable to produce at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼  Backlog for product i produced at machine l at 

period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀  

Total backlog of the products that mold m is 
capable to produce at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖  Additional variable for sub tour eliminations  
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼  1 iff first shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼 1 iff second shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 1 iff third shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 
𝜆𝜆𝐼𝐼  Number of workers on first shift 
𝜆𝜆𝐼𝐼𝐼𝐼  Number of workers on second shift 
𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼  Number of workers on third shift 
𝛽𝛽𝑙𝑙𝑖𝑖 Overtime decision on machine l at period t 

1.2 Exact Mathematical Formulation 

The mathematical model formulation, objective function and 
constraints; along with their detailed explanations are 
presented below: 
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attributes. The interchange of the molds and the versions 
introduce major and minor sequence dependent setups to the 
problem.  

As a matter of course, the shift plan may change according to 
the seasonal demand changes and/or sudden increases in the 
demand of specific products. These changes affect the capacity 
requirements, which in turn affect the workforce and shift 
planning decisions. In our work we extend the CLSD 
formulation to include workforce and shift planning decisions; 
as well as to cover secondary resources like molds. Extended 
formulation is good at solving small instances, however to 
solve larger instances, a hierarchical decomposition heuristic 
is proposed. The proposed method shows promising results 
compared to the exact method especially for larger size 
instances. 

The rest of the paper is organized as follows: Section 2 
presents the notation and exact formulation used in the study. 
Section 3 describes the details of the proposed decomposition 
heuristic. Numerical results are discussed in Section 4 and 
concluding remarks are presented in Section 5. 

2. EXACT FORMULATION AND EXTENSIONS WITH 
SECONDARY RESOURCES 

1.1 Parameters and Decision Variables of the Problem 

The notation for parameters used in the exact CLSD 
formulation is given below: 

𝑆𝑆𝑇𝑇 Set of periods 
𝑆𝑆𝐿𝐿 Set of machines 
𝑆𝑆𝑀𝑀 Set of molds 
𝑆𝑆𝐼𝐼 Set of products 

𝑀𝑀 A big number set to the maximum number of 
products that can be produced in one period 

𝐵𝐵𝑖𝑖
0 Initial backlog for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐵𝐵𝑚𝑚
0  Total initial backlog of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝑆𝑆𝑖𝑖

0 Initial inventory for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝑆𝑆𝑚𝑚
0  Total initial inventory of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝑙𝑙

𝑃𝑃 Unit production cost of machine l (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿) 
𝐶𝐶𝑖𝑖

𝐻𝐻 Unit holding cost of product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐶𝐶𝑚𝑚
𝐻𝐻𝑀𝑀 Unit holding cost of the set of products mold m is 

capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝑖𝑖

𝐵𝐵 Unit backlogging cost of product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝐶𝐶𝑚𝑚
𝐵𝐵𝑀𝑀 Unit backlogging cost of the set of products mold 

m is capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵 Cost of labor per worker 
𝐶𝐶𝑂𝑂𝑇𝑇 Cost of overtime per worker 
𝐶𝐶𝑆𝑆𝑇𝑇 Setup cost per second 

𝐷𝐷𝑖𝑖𝑖𝑖  Demand for product i at period t  
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝐷𝐷𝑚𝑚𝑖𝑖  Total demand for the set of products mold m is 
capable to produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝐷𝐷𝑖𝑖𝑖𝑖
𝑊𝑊  1 iff a demand is present to mold m at period t 

(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑇𝑇𝑖𝑖𝑖𝑖
𝑆𝑆𝑇𝑇 Set up time from product i to product j  

(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑗𝑗 ∈ 𝑆𝑆𝐼𝐼) 

𝑇𝑇𝑚𝑚
𝑆𝑆𝑇𝑇𝑀𝑀 Set up time for mold m (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶  Cycle time for product i (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝑇𝑇𝑚𝑚
𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀 Cycle time for product i (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 
𝑇𝑇𝐶𝐶 Total available production time in one shift 

𝑄𝑄𝑊𝑊 Number of available operators for the shifts per 
day 

𝑄𝑄𝑂𝑂𝑇𝑇  Number of available workers for overtime 
𝑄𝑄𝑚𝑚

𝑀𝑀 Mold quantity for mold m (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝑄𝑄𝑚𝑚
𝑃𝑃  Number of products mold m is capable to 

produce (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀) 

𝛺𝛺𝑚𝑚𝑖𝑖  
1 iff mold m is capable to produce product i, 0 
otherwise (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼) 

𝛤𝛤𝑇𝑇  Percentage of increase in a shift duration if 
overtime is made 

The notation for the decision variables is presented below: 

𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 
1 iff machine l produces product i and j 
consecutively at period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼 ∪ {0};  
(∀𝑗𝑗 ∈ 𝑆𝑆𝐼𝐼 ∪ {0}; ∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼  1 iff machine l produces product i at period t (∀𝑖𝑖 ∈

𝑆𝑆𝐼𝐼 ∪ {0};∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀  1 iff mold m is setup at machine l at period t 

(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼  Production quantity for product i produced at 

machine l at period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑞𝑞𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀  

Total production quantity of products, mold m 
produced, at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝑠𝑠𝑖𝑖𝑖𝑖
𝐼𝐼  Inventory for product i produced at machine l at 

period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑠𝑠𝑚𝑚𝑖𝑖
𝑀𝑀  

Total inventory of the products that mold m is 
capable to produce at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼  Backlog for product i produced at machine l at 

period t (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀  

Total backlog of the products that mold m is 
capable to produce at machine l at period t  
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇 ∪ {0}) 

𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖  Additional variable for sub tour eliminations  
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼  1 iff first shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼 1 iff second shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 1 iff third shift is made on machine l at period t 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 
𝜆𝜆𝐼𝐼  Number of workers on first shift 
𝜆𝜆𝐼𝐼𝐼𝐼  Number of workers on second shift 
𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼  Number of workers on third shift 
𝛽𝛽𝑙𝑙𝑖𝑖 Overtime decision on machine l at period t 

1.2 Exact Mathematical Formulation 

The mathematical model formulation, objective function and 
constraints; along with their detailed explanations are 
presented below: 
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[𝑀𝑀𝑀𝑀𝑀𝑀] 𝑍𝑍 = ∑ ∑ 𝐶𝐶𝑖𝑖
𝐻𝐻𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖
+ ∑ ∑ 𝐶𝐶𝑖𝑖

𝐵𝐵𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ ∑ ∑ ∑ 𝐶𝐶𝑖𝑖
𝑃𝑃𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖𝑙𝑙𝑡𝑡𝑆𝑆𝑙𝑙

+ ∑ ∑ ∑ ∑ 𝐶𝐶𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑙𝑙𝑡𝑡𝑆𝑆𝑙𝑙𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ 𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵(𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼)
+ ∑ ∑ 𝐶𝐶𝑂𝑂𝑆𝑆𝛽𝛽𝑙𝑙𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑙𝑙𝑡𝑡𝑆𝑆𝑙𝑙
 

(1) 

𝐷𝐷𝑖𝑖𝑖𝑖 + 𝑠𝑠𝑖𝑖𝑖𝑖
𝐼𝐼 + 𝑏𝑏𝑖𝑖𝑖𝑖−1

𝐼𝐼 = 𝑠𝑠𝑖𝑖𝑖𝑖−1
𝐼𝐼 + 𝑏𝑏𝑖𝑖𝑖𝑖

𝐼𝐼 + ∑ 𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼

𝑙𝑙∈𝑆𝑆𝐿𝐿

(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(2) 

𝑀𝑀𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼 ≥ 𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖   (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (3) 

∑ 𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶 𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖

iϵSI
+ ∑ ∑ 𝑇𝑇𝑖𝑖𝑖𝑖

𝑆𝑆𝑆𝑆𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖
jϵSIiϵSI

≤ 𝑇𝑇𝐶𝐶(𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛤𝛤𝑆𝑆𝛽𝛽𝑙𝑙𝑖𝑖) 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(4) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

= ∑ 𝑧𝑧𝑦𝑦𝑖𝑖𝑙𝑙𝑖𝑖
𝑦𝑦𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

    

(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(5) 

∑ 𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖
jϵSI∪{0}

≤ 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼

 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(6) 

∑ 𝑧𝑧𝑖𝑖0𝑙𝑙𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝜇𝜇𝑙𝑙𝑖𝑖

 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(7) 

∑ 𝑧𝑧0𝑖𝑖𝑙𝑙𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝜇𝜇𝑙𝑙𝑖𝑖

 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(8) 

𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖 ≤ |𝑆𝑆𝐼𝐼| 
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (9) 

𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖 + |𝑆𝑆𝐼𝐼|𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖 ≤ |𝑆𝑆𝐼𝐼| − 1 
 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀j ∈ 𝑆𝑆𝐼𝐼|𝑖𝑖 ≠ 𝑗𝑗;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(10) 

𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼 = 𝐵𝐵𝑖𝑖

0 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; 0t  ) (11) 
𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼 = 𝑆𝑆𝑖𝑖
0  (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; 0t  ) (12) 

𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀 ≤ 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼  (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (13) 
𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼 ≤ 𝜇𝜇𝑘𝑘𝑖𝑖
𝐼𝐼  (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑘𝑘 ∈ 𝑆𝑆𝐿𝐿|𝑘𝑘 > 𝑙𝑙; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (14) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼 ≥ 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼𝐼𝐼     (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (15) 
𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼𝐼𝐼 ≥ 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼     (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (16) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼 ≥ 𝛽𝛽𝑙𝑙𝑖𝑖     (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (17) 

𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽𝑙𝑙𝑖𝑖 ≤ 3 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (18) 

𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 ≤ 𝑄𝑄𝑊𝑊 (19) 
∑ 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼

𝑙𝑙𝑡𝑡𝑆𝑆𝐿𝐿
≤ 𝜆𝜆𝐼𝐼      (∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (20) 

∑ 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼

lϵSL
≤ 𝜆𝜆𝐼𝐼𝐼𝐼      (∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (21) 

∑ 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼

𝑙𝑙𝑡𝑡𝑆𝑆𝐿𝐿
≤ 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼      (∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (22) 

∑ ∑ 𝛽𝛽𝑙𝑙𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝑇𝑇𝑙𝑙𝑡𝑡𝑆𝑆𝐿𝐿

≤ 𝑄𝑄𝑂𝑂𝑆𝑆  (23) 

∑ 𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀

lϵSL
≤ 𝑄𝑄𝑚𝑚

𝑀𝑀

( ∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 
(24) 

∑ 𝛺𝛺𝑚𝑚𝑖𝑖
𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀

𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖
𝑀𝑀 ≥ 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖

𝐼𝐼

(∀i ∈ SI;∀l ∈ SL; ∀t ∈ ST) 
(25) 

𝑧𝑧𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖, 𝑤𝑤𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼 , 𝑤𝑤𝑚𝑚𝑙𝑙𝑖𝑖

𝑀𝑀 , 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼 , 𝜇𝜇𝑙𝑙𝑖𝑖

𝐼𝐼𝐼𝐼, 𝜇𝜇𝑙𝑙𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼, 𝛽𝛽𝑙𝑙𝑖𝑖 ∈ {0,1} 

𝑞𝑞𝑖𝑖𝑙𝑙𝑖𝑖
𝐼𝐼 , 𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼 ,𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼  ∈ ℝ+ 

𝑢𝑢𝑖𝑖𝑙𝑙𝑖𝑖 , 𝜆𝜆𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼 , 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 ∈ ℤ+ 
Equation (1) is the objective function including the production, 
backlogging, inventory holding, setup, labour and overtime 
costs. Equation (2) is the inventory balance equation. Equation 
(3) prevents the production of product i if setup is not 
executed. M is set as the maximum number of products that 
can be produced in a period. Equation (4) is the capacity 
constraint for the machines.  Equation (5) and (6) guarantee 
there is only one setup arc coming form (or to) a product if that 
product is selected to be produced and system is setup 
accordingly. Equation (7) and (8) assure there is no setup arc 
coming from (or to) the dummy product 0 when there is no 
shift on the machine. Equation (9) and (10) are the sub tour 
elimination constraints shown in Miller et al. (1960). Equation 
(11) and (12) set the initial backlogging and inventory levels. 
Equation (13) prevents a mold setup if a machine is not 
operated. Equation (14) is a symmetry breaking constraint. 
Equation (15) and (16) ensure a shift is not active if a previous 
shift is not active either. Overtime is prevented if a shift is not 
activated by Equation (17) and (18). Equation (19) secures that 
total available workforce is not exceeded. Equation (20), (21) 
and (22) ensure that the total available workforce is not 
exceeded for the three shifts. Equation (23) limits total realized 
overtime. Equation (24) mold usage does not exceed available 
mold quantities.  Equation (25) prevents the production of a 
product if a mold capable to produce that product is not setup.  

3. DECOMPOSITION HEURISTIC 

It is shown in Bitran (1982) that the general CLSD problem is 
NP hard. Due to the NP hard nature of the CLSD problem, a 
decomposition strategy is developed in order to solve large 
instances. In the setting we consider, the major setups are 
related with the mold changes and require more time than the 
setups made on the mold version inserts (minor setups). 
Moreover, the major setup times are not sequence dependent. 
This gives an opportunity to decompose the model according 
to the setup types. Our proposed algorithm decomposes the 
problem into the major setups and minor setups and solves two 
hierarchical mathematical models. 

In order to decompose the problem in setup types, all the 
products (versions), which the molds are capable to produce, 
are consolidated and referred as product types. First stage of 
the heuristic considers the major setups and solves lot sizing 
and scheduling problem without the sequence dependent 
setups on the products. The solution of the first stage provides 
the mold-machine allocation information.  The information 
obtained in this stage is used to construct the set of sequence 
dependent setup decision variables, which are used in the 
second stage of the heuristic. The algorithm reduces the 
solution space of the problem dramatically as the sequence 
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dependent setup variables for the molds which are not used on 
the machines are eliminated from the mathematical model. 
Additionally, defining the mold allocations in the first stage of 
the heuristic yields the removal of (25) from the model, which 
is a hard constraint connecting two binary decision variable 
sets, namely 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼  and 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 .   

The mathematical model for the first stage is presented below: 

[𝑀𝑀𝑀𝑀𝑀𝑀] 𝑍𝑍 = ∑ ∑ 𝐶𝐶𝑚𝑚
𝐻𝐻𝑀𝑀𝑠𝑠𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
+ ∑ ∑ 𝐶𝐶𝑚𝑚

𝐵𝐵𝑀𝑀𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀

+ ∑ ∑ ∑ 𝐶𝐶𝑚𝑚
𝑃𝑃𝑀𝑀𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙

+ ∑ ∑ ∑ ∑ 𝐶𝐶𝑆𝑆𝑆𝑆𝑇𝑇𝑚𝑚
𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙𝑗𝑗𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ 𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵(𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼)
+ ∑ ∑ 𝐶𝐶𝑂𝑂𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙
 

(26) 

𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑠𝑠𝑚𝑚𝑖𝑖
𝑀𝑀 + 𝑏𝑏𝑚𝑚𝑖𝑖−1

𝑀𝑀 = 𝑠𝑠𝑚𝑚𝑖𝑖−1
𝑀𝑀 + 𝑏𝑏𝑚𝑚𝑖𝑖

𝑀𝑀 + ∑ 𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀

𝑖𝑖∈𝑆𝑆𝐿𝐿
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(27) 

𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 ≥ 𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀   (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (28) 

∑ 𝑇𝑇𝑚𝑚
𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
+ ∑ 𝑇𝑇𝑚𝑚

𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀

≤ 𝑇𝑇𝐶𝐶(𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛤𝛤𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖)

− ∑ 𝐷𝐷𝑖𝑖𝑖𝑖
𝑊𝑊𝛺𝛺𝑚𝑚𝑖𝑖𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
  

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(29) 

𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀 = 𝐵𝐵𝑚𝑚

0  (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; 0t  ) (30) 

smt
M = Sm

0   (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; 0t  ) (31) 

Equations (13)-(24)  

 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 , 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼 , 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼, 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼, 𝛽𝛽𝑖𝑖𝑖𝑖 ∈ {0,1} 

𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 , 𝑠𝑠𝑚𝑚𝑖𝑖

𝑀𝑀 ,𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀  ∈ ℝ+ 

 𝜆𝜆𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 ∈ ℤ+ 

The objective function (26) minimizes the production, 
backlogging, inventory holding, setup, labor and overtime 
costs. Contrarily to the production cost in the exact model, 
Equation (26) takes the total number of products that the molds 
are producing. Equation (27) is the inventory balance equation. 
Equation (28) assures that if a mold is not mounted on a 
machine, then it is not allowed to produce products requiring 
that mold. Equation (29) is the capacity constraints which 
includes the expected minor setup times. Equation (4) in the 
exact model consider the exact sequence dependent setup 
times between product changes whereas Equation (29) 
separates major and minor setup times. The major setup times 
are included in the model as the total number of mold setups 
in the machines. The expected minor setup times are calculated 
as the total time of minor setups on a mold (i.e. total setup 

times of products produced on the mold) that can be made on 
each machine.  Equations (30) and (31) are the initial 
backlogging and inventory levels. Equations (13) – (24) are 
same with the exact model. 

The mold setup information taken from the first stage is used 
to generate sequence dependent setup variables in order to 
reduce the problem size in the second stage. All the decision 
variables related to versions (products) of a mold (product 
type) is added to variable pool of the second stage of the 
heuristic. The procedure used to generate the setup variables 
are shown in below algorithm: 

Algorithm: 

1: Solve first stage problem 
2: Get solution values for 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

 3: for each 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀  

4:    if 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 = 1 then 

5:        for each product i,j in mold m do 
6:             Add quadruple  < 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >  to the set �̅�𝑍 
7:        Next 
8:    end if 
9: next 

 

 

10: Construct CLSD with Z̅ and solve 

�̅�𝑍 is the set that contains < i, j, l, t >  quadruples which are used 
to construct CLSD model instance in the second stage. The 
second stage mathematical model is presented below: 

[𝑀𝑀𝑀𝑀𝑀𝑀] 𝑍𝑍 = ∑ ∑ 𝐶𝐶𝑖𝑖
𝐻𝐻𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖
+ ∑ ∑ 𝐶𝐶𝑖𝑖

𝐵𝐵𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ ∑ ∑ ∑ 𝐶𝐶𝑖𝑖
𝑃𝑃𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙

+ ∑ ∑ ∑ ∑ 𝐶𝐶𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖𝑗𝑗
𝑆𝑆𝑆𝑆𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙𝑗𝑗𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ 𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵(𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼)
+ ∑ ∑ 𝐶𝐶𝑂𝑂𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙
 

(32) 

∑ 𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼
+ ∑ ∑ 𝑇𝑇𝑖𝑖𝑗𝑗

𝑆𝑆𝑆𝑆𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖
𝑗𝑗𝑡𝑡𝑆𝑆𝐼𝐼𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼

≤ 𝑇𝑇𝐶𝐶(𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛤𝛤𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖) 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 

(33) 

∑ 𝑧𝑧�̅�𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

= ∑ 𝑧𝑧�̅�𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

    

(∀< 𝑖𝑖, 𝑥𝑥, 𝑙𝑙, 𝑡𝑡 >∈ 𝑍𝑍 ;  ∀< 𝑦𝑦, 𝑖𝑖, 𝑙𝑙, 𝑡𝑡 >∈ Z ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
(34) 

∑ 𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖
𝑗𝑗𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼

 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 
(35) 

∑ 𝑧𝑧�̅�𝑖0𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝜇𝜇𝑖𝑖𝑖𝑖

 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 0, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 
(36) 
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dependent setup variables for the molds which are not used on 
the machines are eliminated from the mathematical model. 
Additionally, defining the mold allocations in the first stage of 
the heuristic yields the removal of (25) from the model, which 
is a hard constraint connecting two binary decision variable 
sets, namely 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖

𝐼𝐼  and 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 .   

The mathematical model for the first stage is presented below: 

[𝑀𝑀𝑀𝑀𝑀𝑀] 𝑍𝑍 = ∑ ∑ 𝐶𝐶𝑚𝑚
𝐻𝐻𝑀𝑀𝑠𝑠𝑚𝑚𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
+ ∑ ∑ 𝐶𝐶𝑚𝑚

𝐵𝐵𝑀𝑀𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀

+ ∑ ∑ ∑ 𝐶𝐶𝑚𝑚
𝑃𝑃𝑀𝑀𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙

+ ∑ ∑ ∑ ∑ 𝐶𝐶𝑆𝑆𝑆𝑆𝑇𝑇𝑚𝑚
𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙𝑗𝑗𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ 𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵(𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼)
+ ∑ ∑ 𝐶𝐶𝑂𝑂𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙
 

(26) 

𝐷𝐷𝑚𝑚𝑖𝑖 + 𝑠𝑠𝑚𝑚𝑖𝑖
𝑀𝑀 + 𝑏𝑏𝑚𝑚𝑖𝑖−1

𝑀𝑀 = 𝑠𝑠𝑚𝑚𝑖𝑖−1
𝑀𝑀 + 𝑏𝑏𝑚𝑚𝑖𝑖

𝑀𝑀 + ∑ 𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀

𝑖𝑖∈𝑆𝑆𝐿𝐿
(∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(27) 

𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 ≥ 𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀   (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) (28) 

∑ 𝑇𝑇𝑚𝑚
𝐶𝐶𝐶𝐶𝐶𝐶𝑀𝑀𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
+ ∑ 𝑇𝑇𝑚𝑚

𝑆𝑆𝑆𝑆𝑀𝑀𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀

≤ 𝑇𝑇𝐶𝐶(𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛤𝛤𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖)

− ∑ 𝐷𝐷𝑖𝑖𝑖𝑖
𝑊𝑊𝛺𝛺𝑚𝑚𝑖𝑖𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

𝑚𝑚𝑡𝑡𝑆𝑆𝑀𝑀
  

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆) 

(29) 

𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀 = 𝐵𝐵𝑚𝑚

0  (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; 0t  ) (30) 

smt
M = Sm

0   (∀𝑚𝑚 ∈ 𝑆𝑆𝑀𝑀; 0t  ) (31) 

Equations (13)-(24)  

 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 , 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼 , 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼, 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼𝐼𝐼, 𝛽𝛽𝑖𝑖𝑖𝑖 ∈ {0,1} 

𝑞𝑞𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 , 𝑠𝑠𝑚𝑚𝑖𝑖

𝑀𝑀 ,𝑏𝑏𝑚𝑚𝑖𝑖
𝑀𝑀  ∈ ℝ+ 

 𝜆𝜆𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 ∈ ℤ+ 

The objective function (26) minimizes the production, 
backlogging, inventory holding, setup, labor and overtime 
costs. Contrarily to the production cost in the exact model, 
Equation (26) takes the total number of products that the molds 
are producing. Equation (27) is the inventory balance equation. 
Equation (28) assures that if a mold is not mounted on a 
machine, then it is not allowed to produce products requiring 
that mold. Equation (29) is the capacity constraints which 
includes the expected minor setup times. Equation (4) in the 
exact model consider the exact sequence dependent setup 
times between product changes whereas Equation (29) 
separates major and minor setup times. The major setup times 
are included in the model as the total number of mold setups 
in the machines. The expected minor setup times are calculated 
as the total time of minor setups on a mold (i.e. total setup 

times of products produced on the mold) that can be made on 
each machine.  Equations (30) and (31) are the initial 
backlogging and inventory levels. Equations (13) – (24) are 
same with the exact model. 

The mold setup information taken from the first stage is used 
to generate sequence dependent setup variables in order to 
reduce the problem size in the second stage. All the decision 
variables related to versions (products) of a mold (product 
type) is added to variable pool of the second stage of the 
heuristic. The procedure used to generate the setup variables 
are shown in below algorithm: 

Algorithm: 

1: Solve first stage problem 
2: Get solution values for 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖

𝑀𝑀

 3: for each 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀  

4:    if 𝑤𝑤𝑚𝑚𝑖𝑖𝑖𝑖
𝑀𝑀 = 1 then 

5:        for each product i,j in mold m do 
6:             Add quadruple  < 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >  to the set �̅�𝑍 
7:        Next 
8:    end if 
9: next 

 

 

10: Construct CLSD with Z̅ and solve 

�̅�𝑍 is the set that contains < i, j, l, t >  quadruples which are used 
to construct CLSD model instance in the second stage. The 
second stage mathematical model is presented below: 

[𝑀𝑀𝑀𝑀𝑀𝑀] 𝑍𝑍 = ∑ ∑ 𝐶𝐶𝑖𝑖
𝐻𝐻𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖
+ ∑ ∑ 𝐶𝐶𝑖𝑖

𝐵𝐵𝑏𝑏𝑖𝑖𝑖𝑖
𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ ∑ ∑ ∑ 𝐶𝐶𝑖𝑖
𝑃𝑃𝑠𝑠𝑖𝑖𝑖𝑖

𝐼𝐼

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙

+ ∑ ∑ ∑ ∑ 𝐶𝐶𝑆𝑆𝑆𝑆𝑇𝑇𝑖𝑖𝑗𝑗
𝑆𝑆𝑆𝑆𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙𝑗𝑗𝑡𝑡𝑆𝑆𝑖𝑖𝑖𝑖𝑡𝑡𝑆𝑆𝑖𝑖

+ 𝐶𝐶𝐿𝐿𝐿𝐿𝐵𝐵(𝜆𝜆𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼 + 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼)
+ ∑ ∑ 𝐶𝐶𝑂𝑂𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝑡𝑡𝑖𝑖𝑡𝑡𝑆𝑆𝑙𝑙
 

(32) 

∑ 𝑇𝑇𝑖𝑖
𝐶𝐶𝐶𝐶𝐶𝐶𝑞𝑞𝑖𝑖𝑖𝑖𝑖𝑖

𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼
+ ∑ ∑ 𝑇𝑇𝑖𝑖𝑗𝑗

𝑆𝑆𝑆𝑆𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖
𝑗𝑗𝑡𝑡𝑆𝑆𝐼𝐼𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼

≤ 𝑇𝑇𝐶𝐶(𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖

𝐼𝐼𝐼𝐼 + 𝜇𝜇𝑖𝑖𝑖𝑖
𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛤𝛤𝑆𝑆𝛽𝛽𝑖𝑖𝑖𝑖) 

(∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 

(33) 

∑ 𝑧𝑧�̅�𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

= ∑ 𝑧𝑧�̅�𝑦𝑖𝑖𝑖𝑖𝑖𝑖
𝑦𝑦𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

    

(∀< 𝑖𝑖, 𝑥𝑥, 𝑙𝑙, 𝑡𝑡 >∈ 𝑍𝑍 ;  ∀< 𝑦𝑦, 𝑖𝑖, 𝑙𝑙, 𝑡𝑡 >∈ Z ̅̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 
(34) 

∑ 𝑧𝑧�̅�𝑖𝑗𝑗𝑖𝑖𝑖𝑖
𝑗𝑗𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖
𝐼𝐼

 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 
(35) 

∑ 𝑧𝑧�̅�𝑖0𝑖𝑖𝑖𝑖
𝑖𝑖𝑡𝑡𝑆𝑆𝐼𝐼∪{0}

≤ 𝜇𝜇𝑖𝑖𝑖𝑖

 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑆𝑆; ∀< 𝑖𝑖, 0, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 
(36) 

2019 IFAC MIM
Berlin, Germany, August 28-30, 2019

1964

 

 

     

 

∑ 𝑧𝑧0̅𝑗𝑗𝑗𝑗𝑗𝑗
𝑗𝑗𝑗𝑗𝑆𝑆𝐼𝐼∪{0}

≤ 𝜇𝜇𝑗𝑗𝑗𝑗

 (∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇; ∀< 0, 𝑗𝑗, 𝑙𝑙, 𝑡𝑡 >∈ �̅�𝑍) 
(37) 

𝑢𝑢𝑖𝑖𝑗𝑗𝑗𝑗 ≤ |𝑆𝑆𝐼𝐼| 
(∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿;∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (38) 

𝑢𝑢𝑖𝑖𝑗𝑗𝑗𝑗 − 𝑢𝑢𝑗𝑗𝑗𝑗𝑗𝑗 + |𝑆𝑆𝐼𝐼|𝑧𝑧�̅�𝑖𝑗𝑗𝑗𝑗𝑗𝑗 ≤ |𝑆𝑆𝐼𝐼| − 1 
 (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼; ∀𝑗𝑗 ∈ 𝑆𝑆𝐼𝐼|𝑖𝑖 ≠ 𝑗𝑗;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) 

(39) 

𝑤𝑤𝑖𝑖𝑗𝑗𝑗𝑗
𝐼𝐼 ≤ 𝜇𝜇𝑗𝑗𝑗𝑗

𝐼𝐼  (∀𝑖𝑖 ∈ 𝑆𝑆𝐼𝐼;∀𝑙𝑙 ∈ 𝑆𝑆𝐿𝐿; ∀𝑡𝑡 ∈ 𝑆𝑆𝑇𝑇) (40) 
Equations (2)-(3)  

Equations (11)-(23)  
𝑧𝑧�̅�𝑖𝑗𝑗𝑗𝑗𝑗𝑗, 𝑤𝑤𝑖𝑖𝑗𝑗𝑗𝑗

𝐼𝐼 , 𝜇𝜇𝑗𝑗𝑗𝑗
𝐼𝐼 , 𝜇𝜇𝑗𝑗𝑗𝑗

𝐼𝐼𝐼𝐼, 𝜇𝜇𝑗𝑗𝑗𝑗
𝐼𝐼𝐼𝐼𝐼𝐼, 𝛽𝛽𝑗𝑗𝑗𝑗 ∈ {0,1} 

𝑞𝑞𝑖𝑖𝑗𝑗𝑗𝑗
𝐼𝐼 , 𝑠𝑠𝑖𝑖𝑗𝑗

𝐼𝐼 ,𝑏𝑏𝑖𝑖𝑗𝑗
𝐼𝐼  ∈ ℝ+ 

𝑢𝑢𝑖𝑖𝑗𝑗𝑗𝑗 , 𝜆𝜆𝐼𝐼, 𝜆𝜆𝐼𝐼𝐼𝐼 , 𝜆𝜆𝐼𝐼𝐼𝐼𝐼𝐼 ∈ ℤ+ 

Equation (32) is the objective function including the 
production, backlogging, and the inventory holding costs. 
Equation (33) is the inventory balance equation. Equation (34) 
- (39) refer to Equations (5) - (10) in the exact model but use 
limited sequence dependent setup variables eliminated in the 
first stage of the heuristic. Equation (40) prevents the 
production of product i if a setup decision is not made. 
Equations (2) - (3) and Equations (11) - (23) are used as they 
were used in the exact model. 

4. NUMERICAL EXPERIMENTS 

We use modified real-world instances obtained from Vestel 
Electronic plastic injection plant. The notation for the problem 
sets describe the number of products (I), number of molds (M), 
number of machines (L) and the number of periods (T). For 
instance, problem instance named I3/M2/L1/T7 has one 
machine with two molds, producing three products and 
problem considers seven production periods. Table 1 lists all 
the problem instances, which are used to compare the 
performances of the exact mathematical formulation and the 
developed decomposition heuristic. The total execution time is 
limited to 900 seconds for both the exact model and the 
heuristic approach. The objective function values of the best 
results obtained in the allotted time reported for both 
approaches. Table 1 presents two sets of information for each 
instance-approach combination: objective function value and 
resulting percentage gap, that is the percentage proximity of 
the attained solution to the lower bound obtained at the end of 
execution of the exact model. Mathematical models for both 
decomposition heuristic and exact methods are solved by the 
commercial solver CPLEX 12.6. 

The results in Table 1 indicate that for small size instances 
(I3/M2/L1/T7 and I4/M2/L1/T7) both methods converge to 
proven optimal solutions. For these instances, both heuristic 
and exact model find the optimal solution in less than five 
seconds. For medium size instances I14/M6/L1/T7 and 
I20/M6/L1/T7, the heuristic method converges to local 
optimum solution, hence reported objective function value for 
the heuristic is larger than that of the exact model. For 
instances I14/M6/L1/T7 and I20/M6/L1/T7, the exact model 
finds the optimal solutions in the allotted time. For the other 
four medium size instances (I15/M7/L2/T7, I20/M14/L9/T7, 
I16/M10/L10/T7, I27/M7/L9/T7 and I28/M8/L13/T7) both 
approaches hit the time limit before convergence and it is seen 

that the objective function value of the solution found by the 
decomposition approach is better than that of the exact model. 
For these four instances, both solution approach hit the 900 
second time limit and the best results obtained during the 
allotted time interval is reported. As the best solution found by 
the heuristic approach is superior to that of exact model, it 
could be inferred that the decomposition heuristic could be 
used for the larger size problem instances. To test this 
hypothesis, we create four large instances (I32/M12/L13/T7, 
I49/M26/L13/T7, I93/M71/L9/T7 and I92/M59/L9/T7) and run 
both algorithms using these instances. It is seen that the exact 
model cannot find a feasible solution in 900 second time limit, 
whereas the proposed heuristic is capable of providing feasible 
solutions for all of the four instances. As an extra step, we 
increase the allocated time 3600 seconds and run the exact 
model using CPLEX solver over these four instances in an 
IBM cloud machine with 60GB RAM. All four executions are 
terminated before hitting the 3600 seconds time limit with out 
of memory error and solver could not report any feasible 
solutions. This indicates that proposed heuristic is valuable for 
practical purposes as it can provide feasible solution to large 
size instances.  

Table 1.  Comparison of performance for exact and heuristic 
methods. 

INSTANCE 
NAME  

OBJ. VALUE GAP 
HEUR. EXACT HEUR. EXACT 

I3/M2/L1/T7 181519 181519 0,00% 0,00% 
I4/M2/L1/T7 288110 288110 0,00% 0,00% 

I14/M6/L1/T7 279150 277385 0,64% 0,00% 
I20/M6/L1/T7 764113 763335 0,10% 0,00% 
I15/M7/L2/T7 97147 97714 9,37% 10,01% 

I20/M14/L9/T7 891302 904328 14,34% 16,01% 
I16/M10/L10/T7 935845 950677 5,06% 6,72% 
I27/M7/L9/T7 301901 324096 24,82% 33,99% 

I28/M8/L13/T7 1318601 1434365 1,66% 10,58% 
I32/M12/L13/T7 548141 * - * 
I49/M26/L13/T7 566644 * - * 
I93/M71/L9/T7 1124081 * - * 
I92/M59/L9/T7 484893 * - * 

 

5. CONCLUSIONS 

We have demonstrated a decomposition heuristic for solving 
CLSD with secondary resources and workforce planning. The 
results show that the method is promising for finding feasible 
solutions even for large instances, where exact model cannot 
be solved in the limited time using one of the state-of-the-art 
commercial MIP solvers, CPLEX. 

We are currently working on a column generation approach on 
the sequence dependent setup decision variables and 
elimination of the associated sub-tour elimination constraints. 
In the ongoing work, we are also modifying the way we 
connect consecutive periods in order to represents the real-
world case better in modelling carry over setups between 
consecutive periods. In this approach we are aiming to solve 
very large instances of the complete problem for the injection 
molding plant (i.e. 87 machines 200+ molds and 300+ 
products) within less than an hour.  
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