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Abstract
Depression is a common mental health problem around the
world with a large burden on economies, well-being, hence pro-
ductivity, of individuals. Its early diagnosis and treatment are
critical to reduce the costs and even save lives. One key aspect
to achieve that goal is to use voice technologies and monitor de-
pression remotely and relatively inexpensively using automated
agents. Although there has been efforts to automatically assess
depression levels from audiovisual features, use of transcrip-
tions along with the acoustic features has emerged as a more re-
cent research venue. Moreover, difficulty in data collection and
the limited amounts of data available for research are also chal-
lenges that are hampering the success of the algorithms. One of
the novel contributions in this paper is to exploit the databases
from multiple languages for feature selection. Since a large
number of features can be extracted from speech, and given the
small amounts of training data available, effective data selec-
tion is critical for success. Our proposed multi-lingual method
was effective at selecting better features and significantly im-
proved the depression assessment accuracy. We also use text-
based features for assessment and propose a novel strategy to
fuse the text- and speech-based classifiers which further boosted
the performance.
Index Terms: Depression estimation, acoustic features, feature
selection, multi-lingual applications

1. Introduction
Depression is a vital problem that affects a large portion of the
population. It affects well-being and productivity of individu-
als as well as being heavy economic burden for the society [1].
Thus, inexpensive and accurate diagnosis with the help of tech-
nology is an increasingly important research challenge [2].

It has been shown that speech signal carries significant
amount of information about mental health of the speakers
[3, 4, 5]. In [6], phase distortion deviation that is used for voice
quality examinations is found to be helpful for detecting de-
pression. In [7], distortions in formant trajectories were used to
detect depression. In [8], degradation in spectral variability was
used. In [9], gender-dependent feature extraction was found to
improve the detection performance.

Besides acoustics-only methods, there are also multi-modal
approaches for detecting depression. In [10], face analysis and
speech prosody are used for depression detection. Similarly,
audio-visual features are used in [11, 12, 13, 14]. Retardations
in motor control due to depression causes changes in coordina-
tion and timing of speech and face movements, which are used
for audio-visual detection in [15].

Besides face features, text analysis of transcriptions have
also been used as another mode of information [2]. In [16],

transcription-derived features were used in addition to the
speech features. Furthermore, sentiments analysis was per-
formed on text and sentiment features were used to build an
independent detector. Then, score fusion was used to combine
acoustic and text-based system scores. Syntactic and semantic
features were derived from transcriptions in [17] and shown to
be effective indicators of depression.

In depression detection, another research challenge is to
use speech data from other languages/cultures to train models.
This approach is not only important for understanding universal
cues of depression across different cultures/languages but also
it allows use of data from other languages, which is important
given the typically small amounts of data available in the pub-
lic databases. In [18], prediction models built with a German
database were shown to produce prediction scores in English
that were correlated with self-assessment scores. In [19], com-
bination of datasets in different languages was shown to yield
high accuracy whereas if the train and test data are in different
languages, performance was found to be lower.

Conversations with patients can be designed in a way to
obtain data that is more indicative of depression, as opposed
to a regular conversation. In [20], type of questions (positive
and negative stimulus) during conversations have been shown
to impact voice quality parameters in psychologically distressed
subjects. Speech segments with higher articulation effort were
found to be more informative for depression detection in [5].

This paper has two contributions. One of the contributions
is novel algorithms for feature selection which was not explored
as much in the literature. We propose a multi-lingual feature
selection where Turkish and German databases were used to-
gether. Moreover, methods to improve redundancy and rele-
vance computations in the case of data sparsity are proposed.
The second contribution is a novel feature fusion technique
where transcription-derived model predictions were used to ad-
just the predictions of the acoustic-only model when their pre-
dictions are highly conflicting. Significant improvements are
obtained both for the Turkish and German databases using the
proposed techniques.

2. Minimum redundancy maximum
relevance (MRMR) feature selection

A large number of features can be derived from conversational
speech to detect depression. However, building models with
those features is challenging because of the curse of dimension-
ality especially given the typically small amounts of training
data available in depression studies.

One way of reducing the dimensionality features is to use
feature selection where features that are most relevant for the
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classification task and least correlated among themselves are
selected. To that end, ”Minimum Redundancy Maximum Rele-
vance” (MRMR) algorithm is commonly used [21, 22, 23].

In the MRMR approach, for maximizing the relevance of
selected features for the classification task, F-statistic is used.

F (gi) = [
∑

k

nk(ḡk − ḡ)2/(K − 1)]/σ2, (1)

ḡk is the mean of the gi, within the kth class. ḡ is the global
mean of whole feature set. The number of classes denoted by
K and σ2 is the pooled variance:

σ2 = [
∑

k

(nk − 1)σ2
k]/(n−K), (2)

where for each class, nk and the σk are size and the variance of
those classes. Relevance of the feature set S is then defined as

maxVF , VF =
1

|S|
∑

i∈S
F (i). (3)

Redundancy is defined using Pearson correlation for every pos-
sible feature combination:

minWc, Wc =
1

|S|2
∑

i,j

|c(i, j)|, (4)

where absolute value of the correlation c(i, j) is used. Finally,
the optimization criteria for MRMR is

max(VF −Wc). (5)

3. Proposed feature selection algorithms
We propose several algorithms to improve the performance
of the MRMR method for the depression detection problem
where data is typically limited and, therefore, computation of
F-statistic and correlation is unreliable.

3.1. Multi-lingual computation of relevance

The F-statistic computation in Eq.(1) assumes that there is
enough data for each class to compute the mean of each class re-
liably, which is not the case when the number of classes is large
and the data is limited. In the multi-lingual approach, the core
idea is to use speech data collected from depression patients in
other languages for relevance computation.

In order to increase the number of available samples for
each class, hence improve the computation of relevance, we ex-
ploit the samples available in a different language for the same
or neighboring classes with reduced weights assigned to the
samples as the neighbors are further away on the depression
scale. To that end, we have changed the computation of ḡk and
nk. The weight parameter γ is defined as

γt = e−t2 . (6)

where t indicates how close the neighbors are on the depression
scale. Number of samples in class k, n̂k is adjusted using the
parameter γ, the amount of adjustment depends on how much
we need to satisfy the Nmin constraint.

n̂k =

+Jk∑

j=−Jk

γjnk+j (7)

J is set such that n̂k > Nmin. Thus, by including data from the
same and neighboring classes in a different database, we ensure
that there are at least Nmin samples for each class in the target
database. The adjusted mean of each class k, ḡk′, is then

ḡ
′
k =

1

n̂k

+Jk∑

j=−Jk

nk−j−1∑

s=0

γjgk−j(s)k − j(s) (8)

where gk−j(s) is sample s in class k − j. Thus, the final
equation to compute F-score becomes:

F (gi) = [
∑

k

n̂k(ḡk
′ − ḡ)2/(K − 1)]/σ2, (9)

3.2. Clustering approach

Even though the Beck depression scale is from 1 to 63 with
a step size of 1, given randomness in the responses to Beck
questionnaire, the resolution is expected to be lower than that.
Hence, the difference between a person with a score of 3 or 4
may not be as significant to warrant different classes for those
two cases especially given the very limited training data avail-
able.

In the clustering approach, we clustered the depression
classes and reduced the number of classes in the MRMR train-
ing process to improve the feature selection performance by in-
creasing the data available for each class. In this approach, data
is split uniformly into Nclus classes.

3.3. Robust computation of redundancy (RCR)

Class labels are not required for the computation of redundancy,
as shown in Eq.(4). Thus, large amounts of unlabeled, i.e. de-
pression scores not available, speech data can be exploited for
computing the redundancy. In this approach, we propose using
unlabeled speech databases to compute redundancy when the
amount of labeled data is limited.

4. Fusion with text-based features
4.1. Description of text-based features

We tagged sentiment (positive/negative/neutral) of the patients’
responses to interviewers questions. Even though sentiment
tagging can be done automatically by using online services,
here it is done manually. Total numbers of positive, negative,
and neutral answers during the conversation are used as a three
dimensional feature vector.

Using the timing information in the transcriptions, average
length of the utterances and the rate of speech are also computed
for each patient. Together with the 3 sentiment features, a total
of 5 text-based features are thus extracted.

To further enrich the feature set, we also tagged the senti-
ment of the questions as positive, negative and neutral. Then,
the 5 features described above are extracted separately for each
question. For example, if the question is ”can you tell us a re-
cent positive experience?” and the answer is ”I do not have any”,
this is a negative answer to a positive question. Extracting the 5
features for the 3 question types, 15 dimensional feature vectors
are obtained.

4.2. Fusion of acoustic- and text-based features

The fusion algorithm is designed based on the observation
that acoustics-only system often overestimates in its prediction.
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Those overestimations significantly impact the overall perfor-
mance of the system and reduces its reliability. Text only result
is 10.38, which over-performs the baseline audio result.

In our proposed approach, instead of performing commonly
used score or feature fusion methods, we used a co-training al-
gorithm to adjust the scores produced by the acoustics-only sys-
tem. In this approach, any score above 30 is tagged as class-1
and any score below 18 is tagged as class-2. If the acoustic-
only system generates a score that is above 30 or below 18 and
if the text-only system also produces a score in the same range
(agreement case), then the score from the acoustic-only system
is used. If they are in disagreement, i.e., one of the system pro-
duces a score that is in class-1 and the other produces a score
that is in class-2, the final score is adjusted by changing the
acoustic-only result by getting it closer to opposite class. If
the prediction of the acoustic system is pacou, final prediction
pfuse is computed by adding or subtracting Γ from pacou. Γ is
determined using a grid search algorithm on the training data.

5. Experiment setup
5.1. Databases

The German database, distributed as part of the AVEC 2013
challenge [24], consists of conversations with 150 patients.
[25]. Beck scores of the 100 patients are available whereas they
are not available for the other 50 patients. The mean age of Ger-
man database subjects is 31.5. The duration of the recordings
range from 6 seconds to 4 minutes. Average BDI-II score is
15.1 and standard deviation is 12.3.

The Turkish database was collected at a hospital in Istanbul.
It consists of 70 subjects. Mean age of the patients is 34. 14
of them are male and the rest is female. Beck scores of all
subjects are available using the depression questionnaire, the
Beck Depression Inventory-II (BDI-II) [26]. The average BDI-
II score of the patients is 23.45 with a standard deviation of
11.01.

The Turkish database consists of interviews with the pa-
tients. Three types of questions were directed to the patients:
neutral, positive and negative questions. For example, ”Are you
currently employed?” was a neutral question, ”What made you
happy lately?” is a positive question, and ”What made you sad
lately?” is a negative question. The interview consists of 16
questions. The mean length of the conversations is close to 5
minutes. The total length of the recordings is 6 hours. They
were recorded using a headphone microphone connected to a
built-in sound card of a laptop with a sampling rate of 48 kHz.

5.2. Acoustic features

The open-source toolkit OpenSMILE [27] was used for acoustic
feature extraction. The AVEC 2013 feature extraction protocol
was used. Feature vectors include 32 energy and spectral related
low-level descriptors (LLDs) and their functionals [25]. 2268
dimensional features were extracted per speaker. Functionals
were computed over 20 seconds time windows.

5.3. Baseline system

MRMR feature selection method was applied [28] to reduce the
number of acoustic features. Support Vector Regression (SVR)
was to used to model the relationship between the features and
the depression scores. Because the amount of training data is
small, leave-one-out method was used. Performance is mea-
sured using the root mean square error (RMSE) criterion.

6. Results and discussion
Two sets of experiments were conducted. In the first set, the
proposed feature selection algorithms were tested and compared
with the baseline MRMR algorithm both for the German and
Turkish databases. The RCR algorithm proposed for redun-
dancy computation in Section 3.3 was not used for the Turkish
database since unlabeled data is not available in that database.
In the second set, text-based features were tested only with the
Turkish database since the transcriptions were not available for
the German database.

The evaluation criteria for all experiments were root mean
square error (RMSE), which is also used in the AVEC chal-
lenges [24, 25, 2, 29]. Significance of the results were tested us-
ing the t-test with p < 0.05. Support Vector Regression (SVR)
was used in all systems.

6.1. Performance of the feature selection algorithms

Performance of the baseline and the proposed multi-lingual
and RCR feature selection algorithms for the German database
are shown in Table 1. In the multi-lingual approach, Turkish
database was used to supplement additional features for each
depression class in the German database when the number of
samples is less than Nmin as described in Section 3.1. Even
though performance improved for Nmin = 3, the improvement
was not significant. Improvement with Nmin = 5 was found
to be significant only when the RCR algorithm was also used.
RCR algorithm was not effective when it was used by itself.

Table 2 shows the results with the baseline and the multi-
lingual feature selection algorithm for the Turkish database.
Best result was 10.51 and the improvement compared to base-
line was significant. RCR algorithm was not applied to Turkish
due to lack of unlabeled data. The clustering algorithm pro-
posed in Section 3.2 for the Turkish database was used with 2,
9, and 15 classes instead of the 45 distinct classes available in
the databases. Results are shown in Table 3. Even though the
system with 15 clusters significantly outperformed the baseline
system, the improvement was not more than what was obtained
with the multi-lingual MRMR approach.

Dim Baseline Nmin = 3 Nmin = 5
3 12.30 10.51 (p = 0.05) 11.26
4 12.45 10.85 10.74 (p = 0.37)
5 12.56 10.58 11.23
10 12.45 10.82 12.13
15 12.08 11.12 12.00
20 12.87 11.91 11.46
40 13.28 12.67 11.98
80 11.58 12.28 13.06
100 11.75 11.95 13.08
200 11.32 11.55 12.14
400 11.42 11.72 12.00
800 11.31 11.39 11.35

Table 2: Performance of the multi-Lingual MRMR Methods for
the Turkish database when the minimum occurrence threshold
Nmin is set 3 and 5. Best results are shown in bold together
with their statistical significance using t-test.

6.2. Performance of score fusion

Table 4 shows results when speech-based features were fused
with text-based features using the proposed approach described
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Dim Baseline Nmin = 5 Nmin = 5 and RCR Nmin = 3 Nmin = 3 and RCR RCR
10 9.90 9.97 9.99 10.37 12.39 10.02
15 9.81 10.21 9.43 p(0.01) 10.13 12.12 10.08
20 9.86 10.32 9.52 9.84 10.68 9.74
40 10.25 10.35 10.45 9.73 11.36 10.22
80 10.69 9.93 9.88 9.42 p(0.47) 10.93 10.06
100 10.48 9.93 9.74 9.50 10.54 10.17
200 10.12 10.00 10.38 9.69 10.28 10.44
400 10.14 9.79 10.21 9.58 10.29 10.13
800 10.08 9.86 10.11 9.91 10.11 9.89
1000 10.02 9.85 10.14 9.79 10.16 9.98

Table 1: Performance of the multi-lingual MRMR Methods for the German database when the minimum occurrence threshold Nmin is
set 3 and 5. Results are shown both when the RCR algorithm is used and not used. Best results are shown in bold together with their
statistical significance using t-test.

Dim Baseline 2-Cluster 9-Cluster 15-Cluster
5 12.56 11.35 13.14 11.99
10 12.45 10.95 13.42 12.25
15 12.08 11.13 13.07 11.75
20 12.87 11.74 13.23 12.95
40 13.28 12.33 13.73 12.06
80 11.58 12.72 13.33 10.83
100 11.75 13.22 13.09 10.97
200 11.32 11.72 12.66 11.50
400 11.42 11.83 12.00 11.40
800 11.31 11.62 11.70 11.64

Table 3: Results with feature selection using the clustering ap-
proach with 2, 9, and 15 clusters. Turkish database is used.
Statistically significant (p < 0.05) improvement is shown in
bold.

in Section 4.2. Fusion algorithm significantly improved the per-
formance (p-value=0.01) compared to the baseline case by re-
ducing the error by more than 10%. Spread of the prediction
errors is substantially reduced after fusion as shown in Fig. 1.
Fourth column in Table 4 shows the results for the multi-lingual
feature selection for Turkish whenNmin = 3. Even though that
approach worked well compared to the baseline when fusion
was used, improvement with it compared to the base-fusion was
not found to be significant. Fifth column shows the best result
obtained with the clustering approach together with the fusion
method. That algorithm not only outperformed the baseline but
also outperformed the base-fusion algorithm significantly.

7. Conclusion and future work
We investigated using multi-lingual databases for feature selec-
tion in the context of depression assessment, which was found
to be effective. This result is significant not only because it is a
step towards using larger multi-lingual databases for depression
detection, but also it indicates that there are similarities between
two entirely different languages in the way they manifest de-
pression. As a second contribution, we proposed novel features
derived from transcriptions and fused them with the acoustic
features in way that significantly improved the performance.

In future work, we will add more languages to our database
and continue to improve the feature selection process. More-
over, we believe that our text features are also language-
independent and we will investigate fusion algorithms in a
multi-lingual setting.
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Figure 1: Distribution of squared errors for the baseline MRMR
case is shown in the top figure. The bottom figure shows the
squared error distribution for the Baseline MRMR after fusion.

Dim Baseline Base-fusion Fusion Fusion
(Nmin = 3) (15 Clus.)

3 12.30 10.87 9.59 11.15
4 12.45 10.81 9.94 10.81
5 12.56 10.79 9.66 10.62
10 12.45 11.07 9.92 10.67
15 12.08 10.53 10.06 10.13
20 12.87 11.02 10.35 11.18
40 13.28 11.51 11.23 10.41
80 11.58 10.19 10.71 9.59
100 11.75 10.33 10.30 9.93
200 11.32 10.15 10.17 10.40
400 11.42 10.08 10.04 10.25
800 11.31 10.03 10.10 10.35

Table 4: Results after fusing with text classification. Turkish
database was used. Baseline acoustic system predictions are
used in base-fusion. Bold results show cases where the improve-
ment is significant compared to the baseline case but not to the
base-fusion case. In the underlined bold case, improvement is
significant both compared to the baseline system and the base-
fusion system.
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